The third boundary value problem in potential theory
Czechoslovak Mathematical Journal (1972)
- Volume: 22, Issue: 4, page 554-580
- ISSN: 0011-4642
Access Full Article
topHow to cite
topNetuka, Ivan. "The third boundary value problem in potential theory." Czechoslovak Mathematical Journal 22.4 (1972): 554-580. <http://eudml.org/doc/12684>.
@article{Netuka1972,
author = {Netuka, Ivan},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {4},
pages = {554-580},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The third boundary value problem in potential theory},
url = {http://eudml.org/doc/12684},
volume = {22},
year = {1972},
}
TY - JOUR
AU - Netuka, Ivan
TI - The third boundary value problem in potential theory
JO - Czechoslovak Mathematical Journal
PY - 1972
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 22
IS - 4
SP - 554
EP - 580
LA - eng
UR - http://eudml.org/doc/12684
ER -
References
top- M. Brelot, Eléments de la théorie classique du potentiel, Les cours de Sorbonne, Paris, 1959. (1959) Zbl0084.30903MR0106366
- Ju. D. Burago, V. G. Mazja: S, ome questions in potential theory and function theory for regions with irregular boundaries, (Russian), Zapiski nauč. sem. Leningrad, otd. MIAN 3 (1967). (1967)
- Ju. D. Burago V. G. Mazja, V. D. Sapoznikova, On the theory of potentials of a double and a simple layer for regions with irregular boundaries, (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 3 - 34, Izdat. Leningrad. Univ.,Leningrad, 1966. (1966) MR0213596
- J. Král, 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503DOI10.2307/1994580
- N. L. Landkof, Fundamentals of modern potential theory, (Russian), Izdat. Nauka, Moscow, 1966. (1966) MR0214795
- I. Netuka, The Robin problem in potential theory, Comment. Math. Univ. Carolinae 12 (1971), 205-211. (1971) Zbl0215.42602MR0287021
- I. Netuka, Generalized Robin problem in potential theory, Czechoslovak Math. J. 22 (97) (1972), 312-324. (1972) Zbl0241.31008MR0294673
- I. Netuka, An operator connected with the third boundary value problem in potential theory, Czechoslovak Math. J. 22 (97) (1972), 462-489. (1972) Zbl0241.31009MR0316733
- J. Plemelj, Potentialtheoretische Untersuchungen, Leipzig, 1911. (1911)
- J. Radon, Über die Randwertaufgaben beim logaritmischen Potential, Sitzungsber. Akad. Wiss. Wien (2a) 128 (1919), 1123-1167. (1919)
- F. Riesz, B. Sz. Nagy, Leçons d'analyse fonctionelle, Budapest, 1952. (1952)
- S. Saks, Theory of the integral, Hafner Publishing Соmp., New York, 1937. (1937) Zbl0017.30004
- V. D. Sapoznikova, Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35-44, Izdat. Leningrad. Univ., Leningrad, 1966. (1966) MR0213597
- L. Schwartz, Théorie des distributions, Hermann, Paris, 1950. (1950) Zbl0037.07301MR0209834
- K. Yosida, Functional analysis, Springer Verlag, Berlin, 1965. (1965) Zbl0126.11504
Citations in EuDML Documents
top- Ivan Netuka, A mixed boundary value problem for heat potentials (Preliminary communication)
- Josef Král, A note on the Robin problem in potential theory (Preliminary communication)
- Dagmar Medková, Solution of the Neumann problem for the Laplace equation
- Eva Pokorná, Harmonic functions on convex sets and single layer potentials
- Ivan Netuka, An operator connected with the third boundary value problem in potential theory
- Josef Král, Dagmar Medková, Essential norms of a potential theoretic boundary integral operator in
- Ivan Netuka, Generalized Robin problem in potential theory
- Dagmar Medková, Solution of the Robin problem for the Laplace equation
- Dagmar Medková, The boundary-value problems for Laplace equation and domains with nonsmooth boundary
- Ivan Netuka, Double layer potentials and the Dirichlet problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.