An operator connected with the third boundary value problem in potential theory
Czechoslovak Mathematical Journal (1972)
- Volume: 22, Issue: 3, page 462-489
- ISSN: 0011-4642
Access Full Article
topHow to cite
topNetuka, Ivan. "An operator connected with the third boundary value problem in potential theory." Czechoslovak Mathematical Journal 22.3 (1972): 462-489. <http://eudml.org/doc/12675>.
@article{Netuka1972,
author = {Netuka, Ivan},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {3},
pages = {462-489},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An operator connected with the third boundary value problem in potential theory},
url = {http://eudml.org/doc/12675},
volume = {22},
year = {1972},
}
TY - JOUR
AU - Netuka, Ivan
TI - An operator connected with the third boundary value problem in potential theory
JO - Czechoslovak Mathematical Journal
PY - 1972
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 22
IS - 3
SP - 462
EP - 489
LA - eng
UR - http://eudml.org/doc/12675
ER -
References
top- M. G. Arsove, 10.1137/1002039, SIAM Review 2 (1960), 177-184. (1960) Zbl0094.08005MR0143926DOI10.1137/1002039
- E. De Giorgi, Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni, Ricerche di Matematica 4 (1955), 95-113. (1955) MR0074499
- N. Dunford, J. T. Schwartz, Linear operators, Part I, Interscience Publishers, New York, 1958. (1958) Zbl0084.10402MR0117523
- H. Federer, 10.1090/S0002-9947-1945-0013786-6, Trans. Amer. Math. Soc. 58 (1945), 44 - 76. (1945) Zbl0060.14102MR0013786DOI10.1090/S0002-9947-1945-0013786-6
- H. Federer, The (Ф, k) rectifiable subset of n space, Trans. Amer. Math. Soc. 62 (1947), 114-192. (1947) MR0022594
- H. Féderer, 10.1090/S0002-9939-1958-0095245-2, Proc. Amer. Math. Soc. 9 (1958), 447-451. (1958) MR0095245DOI10.1090/S0002-9939-1958-0095245-2
- H. Federer, 10.1090/S0002-9947-1959-0110078-1, Trans. Amer. Math. Soc. 93 (1959), 418-491. (1959) Zbl0089.38402MR0110078DOI10.1090/S0002-9947-1959-0110078-1
- W. H. Fleming, Functions of several variables, Addison-Wesley Publishing Соmp., INC., 1965. (1965) Zbl0136.34301MR0174675
- J. Král, 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503DOI10.2307/1994580
- J. Král, Flows of heat and the Fourier problem, , Czechoslovak Math. J. 20 (1970), 556-598. (1970) MR0271554
- K. Kuratowski, 10.1016/B978-0-12-429201-7.50006-5, vol. I, Academic Press, 1966. (1966) Zbl0163.17002MR0217751DOI10.1016/B978-0-12-429201-7.50006-5
- N. S. Landkof, Fundamentals of modern potential theory, (Russian), Izdat. Nauka, Moscow, 1966. (1966) MR0214795
- J. W. Milnor, Topology from the differentiable viewpoint, The University Press of Virginia, 1965. (1965) Zbl0136.20402MR0226651
- M. Miranda, Distribuzioni aventi derivate misure, Insiemi di perimetro localmente finito, Ann. Scuola Norm. Sup. Pisa 18 (1964), 27-56. (1964) Zbl0131.11802MR0165073
- I. Netuka, The Robin problem in potential theory, Comment. Math. Univ. Carolinae 12 (1971), 205-211. (1971) Zbl0215.42602MR0287021
- I. Netuka, Generalized Robin problem in potential theory, Czechoslovak Math. J. 22 (1972), 312-324. (1972) Zbl0241.31008MR0294673
- I. Netuka, The third boundary value problem in potential theory, Czechoslovak Math. J. 22 (1972) (to appear). (1972) Zbl0242.31007MR0313528
- V. D. Sapoznikova, Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries, (Russian), Problems Mat. Anal. Boundary Value Problems Integr. Equations (Russian), 35-44, Izdat. Leningrad. Univ., Leningrad, MR0213597
Citations in EuDML Documents
top- Ivan Netuka, The third boundary value problem in potential theory
- Josef Král, Stanislav Mrzena, Heat sources and heat potentials
- Josef Král, A note on the Robin problem in potential theory (Preliminary communication)
- Eva Pokorná, Harmonic functions on convex sets and single layer potentials
- Ivan Netuka, Fredholm radius of a potential theoretic operator for convex sets
- Ivan Netuka, Generalized Robin problem in potential theory
- Dagmar Medková, Solution of the Robin problem for the Laplace equation
- Dagmar Medková, The boundary-value problems for Laplace equation and domains with nonsmooth boundary
- Ivan Netuka, Double layer potentials and the Dirichlet problem
- Dagmar Medková, The third boundary value problem in potential theory for domains with a piecewise smooth boundary
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.