On the Djrbashian kernel of a Siegel domain
Elisabetta Barletta; Sorin Dragomir
Studia Mathematica (1998)
- Volume: 127, Issue: 1, page 47-63
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBarletta, Elisabetta, and Dragomir, Sorin. "On the Djrbashian kernel of a Siegel domain." Studia Mathematica 127.1 (1998): 47-63. <http://eudml.org/doc/216459>.
@article{Barletta1998,
abstract = {We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain $Ω_n = \{ζ ∈ ℂ^n : ϱ (ζ) >0\} $, $ϱ(ζ) = Im(ζ_1) - |ζ^\{\prime \}|^2$. We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the $ϱ^α$-Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of $Ω_n$. We build an anti-holomorphic embedding of $Ω_n$ in the complex projective Hilbert space $ℂℙ(H^2_α(Ω_n))$ and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes. The Genchev transform (cf. [9]) is shown to be well defined on $L^2(Ω, ϱ^α)$, for any strip Ω ⊂ ℂ, and applied in a problem of approximation by holomorphic functions. Building on work by T. Mazur (cf. [15]) we prove the existence of a complete orthonormal system in $H^2_α(Ω_n)$ consisting of eigenfunctions of a certain explicitly defined operator $V_a$, $a ∈ B_n$.},
author = {Barletta, Elisabetta, Dragomir, Sorin},
journal = {Studia Mathematica},
keywords = {γ-Bergman kernel; reproducing kernel Hilbert space; Djrbashian kernel; transition probability amplitude; Genchev transform; Bergman kernel},
language = {eng},
number = {1},
pages = {47-63},
title = {On the Djrbashian kernel of a Siegel domain},
url = {http://eudml.org/doc/216459},
volume = {127},
year = {1998},
}
TY - JOUR
AU - Barletta, Elisabetta
AU - Dragomir, Sorin
TI - On the Djrbashian kernel of a Siegel domain
JO - Studia Mathematica
PY - 1998
VL - 127
IS - 1
SP - 47
EP - 63
AB - We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain $Ω_n = {ζ ∈ ℂ^n : ϱ (ζ) >0} $, $ϱ(ζ) = Im(ζ_1) - |ζ^{\prime }|^2$. We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the $ϱ^α$-Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of $Ω_n$. We build an anti-holomorphic embedding of $Ω_n$ in the complex projective Hilbert space $ℂℙ(H^2_α(Ω_n))$ and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes. The Genchev transform (cf. [9]) is shown to be well defined on $L^2(Ω, ϱ^α)$, for any strip Ω ⊂ ℂ, and applied in a problem of approximation by holomorphic functions. Building on work by T. Mazur (cf. [15]) we prove the existence of a complete orthonormal system in $H^2_α(Ω_n)$ consisting of eigenfunctions of a certain explicitly defined operator $V_a$, $a ∈ B_n$.
LA - eng
KW - γ-Bergman kernel; reproducing kernel Hilbert space; Djrbashian kernel; transition probability amplitude; Genchev transform; Bergman kernel
UR - http://eudml.org/doc/216459
ER -
References
top- [1] N. Aronszajn, La théorie des noyaux reproduisants et ses applications, Proc. Cambridge Philos. Soc. 39 (1943), 118-153. Zbl0061.26204
- [2] S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. I, J. Reine Angew. Math. 169 (1933), 1-42.
- [3] S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys 5, Amer. Math. Soc., 1950. Zbl0040.19001
- [4] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in , Astérisque 77 (1980), 11-66. Zbl0472.46040
- [5] M. M. Djrbashian, Interpolation and spectral expansions associated with differential operators of fractional order, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 19 (1984), 81-181 (in Russian).
- [6] M. M. Djrbashian and A. H. Karapetyan, Integral representations for some classes of functions holomorphic in a Siegel domain, J. Math. Anal. Appl. 179 (1993), 91-109. Zbl0791.32004
- [7] S. Dragomir, On weighted Bergman kernels of bounded domains, Studia Math., 108 (1994), 149-157. Zbl0818.32006
- [8] K. Gawędzki, Fourier-like kernels in geometric quantization, Dissertationes Math. 125 (1976). Zbl0343.53024
- [9] T. Genchev, Paley-Wiener type theorems for functions holomorphic in a half-plane, C. R. Acad. Bulgare Sci. 37 (1983), 141-144. Zbl0545.30030
- [10] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. Zbl0451.53038
- [11] P. F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded pseudoconvex sets, Indiana Univ. Math. J. (2) 27 (1978), 275-282. Zbl0422.53032
- [12] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267-290. Zbl0136.07102
- [13] S. G. Krantz, Function Theory of Several Complex Variables, Pure Appl. Math., Wiley, New York, 1982. Zbl0471.32008
- [14] A. Lichnerowicz, Variétés complexes et tenseur de Bergman, Ann. Inst. Fourier (Grenoble) 15 (1965), 345-408. Zbl0134.05903
- [15] T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (1989), 303-310. Zbl0677.46015
- [16] T. Mazur, On the complex manifolds of Bergman type, in: Classical Analysis, Proc. 6th Symposium (23-29 September 1991, Poland), World Scientific, 1993, 132-138.
- [17] T. Mazur and M. Skwarczyński, Spectral properties of holomorphic automorphisms with fixed point, Glasgow Math. J. 28 (1986), 25-30. Zbl0579.46017
- [18] A. Odzijewicz, On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577-597. Zbl0645.53044
- [19] Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134. Zbl0739.46010
- [20] Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. Math. Sci. 15 (1992), 1-14. Zbl0749.32019
- [21] W. Rudin, Function Theory in the Unit Ball of , Springer, New York, 1980.
- [22] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 89 (1983), 74-78. Zbl0595.46026
- [23] S. Saitoh, One approach to some general integral transforms and its applications, Integral Transforms and Special Functions 3 (1995), 49-84. Zbl0837.30002
- [24] M. Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. 173 (1980).
- [25] M. Skwarczyński, Alternating projections between a strip and a half-plane, Math. Proc. Cambridge Philos. Soc. 102 (1987), 121-129. Zbl0625.30012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.