On the Djrbashian kernel of a Siegel domain

Elisabetta Barletta; Sorin Dragomir

Studia Mathematica (1998)

  • Volume: 127, Issue: 1, page 47-63
  • ISSN: 0039-3223

Abstract

top
We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain Ω n = ζ n : ϱ ( ζ ) > 0 , ϱ ( ζ ) = I m ( ζ 1 ) - | ζ ' | 2 . We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the ϱ α -Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of Ω n . We build an anti-holomorphic embedding of Ω n in the complex projective Hilbert space ( H α 2 ( Ω n ) ) and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes. The Genchev transform (cf. [9]) is shown to be well defined on L 2 ( Ω , ϱ α ) , for any strip Ω ⊂ ℂ, and applied in a problem of approximation by holomorphic functions. Building on work by T. Mazur (cf. [15]) we prove the existence of a complete orthonormal system in H α 2 ( Ω n ) consisting of eigenfunctions of a certain explicitly defined operator V a , a B n .

How to cite

top

Barletta, Elisabetta, and Dragomir, Sorin. "On the Djrbashian kernel of a Siegel domain." Studia Mathematica 127.1 (1998): 47-63. <http://eudml.org/doc/216459>.

@article{Barletta1998,
abstract = {We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain $Ω_n = \{ζ ∈ ℂ^n : ϱ (ζ) >0\} $, $ϱ(ζ) = Im(ζ_1) - |ζ^\{\prime \}|^2$. We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the $ϱ^α$-Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of $Ω_n$. We build an anti-holomorphic embedding of $Ω_n$ in the complex projective Hilbert space $ℂℙ(H^2_α(Ω_n))$ and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes. The Genchev transform (cf. [9]) is shown to be well defined on $L^2(Ω, ϱ^α)$, for any strip Ω ⊂ ℂ, and applied in a problem of approximation by holomorphic functions. Building on work by T. Mazur (cf. [15]) we prove the existence of a complete orthonormal system in $H^2_α(Ω_n)$ consisting of eigenfunctions of a certain explicitly defined operator $V_a$, $a ∈ B_n$.},
author = {Barletta, Elisabetta, Dragomir, Sorin},
journal = {Studia Mathematica},
keywords = {γ-Bergman kernel; reproducing kernel Hilbert space; Djrbashian kernel; transition probability amplitude; Genchev transform; Bergman kernel},
language = {eng},
number = {1},
pages = {47-63},
title = {On the Djrbashian kernel of a Siegel domain},
url = {http://eudml.org/doc/216459},
volume = {127},
year = {1998},
}

TY - JOUR
AU - Barletta, Elisabetta
AU - Dragomir, Sorin
TI - On the Djrbashian kernel of a Siegel domain
JO - Studia Mathematica
PY - 1998
VL - 127
IS - 1
SP - 47
EP - 63
AB - We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain $Ω_n = {ζ ∈ ℂ^n : ϱ (ζ) >0} $, $ϱ(ζ) = Im(ζ_1) - |ζ^{\prime }|^2$. We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the $ϱ^α$-Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of $Ω_n$. We build an anti-holomorphic embedding of $Ω_n$ in the complex projective Hilbert space $ℂℙ(H^2_α(Ω_n))$ and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes. The Genchev transform (cf. [9]) is shown to be well defined on $L^2(Ω, ϱ^α)$, for any strip Ω ⊂ ℂ, and applied in a problem of approximation by holomorphic functions. Building on work by T. Mazur (cf. [15]) we prove the existence of a complete orthonormal system in $H^2_α(Ω_n)$ consisting of eigenfunctions of a certain explicitly defined operator $V_a$, $a ∈ B_n$.
LA - eng
KW - γ-Bergman kernel; reproducing kernel Hilbert space; Djrbashian kernel; transition probability amplitude; Genchev transform; Bergman kernel
UR - http://eudml.org/doc/216459
ER -

References

top
  1. [1] N. Aronszajn, La théorie des noyaux reproduisants et ses applications, Proc. Cambridge Philos. Soc. 39 (1943), 118-153. Zbl0061.26204
  2. [2] S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. I, J. Reine Angew. Math. 169 (1933), 1-42. 
  3. [3] S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys 5, Amer. Math. Soc., 1950. Zbl0040.19001
  4. [4] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L p , Astérisque 77 (1980), 11-66. Zbl0472.46040
  5. [5] M. M. Djrbashian, Interpolation and spectral expansions associated with differential operators of fractional order, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 19 (1984), 81-181 (in Russian). 
  6. [6] M. M. Djrbashian and A. H. Karapetyan, Integral representations for some classes of functions holomorphic in a Siegel domain, J. Math. Anal. Appl. 179 (1993), 91-109. Zbl0791.32004
  7. [7] S. Dragomir, On weighted Bergman kernels of bounded domains, Studia Math., 108 (1994), 149-157. Zbl0818.32006
  8. [8] K. Gawędzki, Fourier-like kernels in geometric quantization, Dissertationes Math. 125 (1976). Zbl0343.53024
  9. [9] T. Genchev, Paley-Wiener type theorems for functions holomorphic in a half-plane, C. R. Acad. Bulgare Sci. 37 (1983), 141-144. Zbl0545.30030
  10. [10] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. Zbl0451.53038
  11. [11] P. F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded pseudoconvex sets, Indiana Univ. Math. J. (2) 27 (1978), 275-282. Zbl0422.53032
  12. [12] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267-290. Zbl0136.07102
  13. [13] S. G. Krantz, Function Theory of Several Complex Variables, Pure Appl. Math., Wiley, New York, 1982. Zbl0471.32008
  14. [14] A. Lichnerowicz, Variétés complexes et tenseur de Bergman, Ann. Inst. Fourier (Grenoble) 15 (1965), 345-408. Zbl0134.05903
  15. [15] T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (1989), 303-310. Zbl0677.46015
  16. [16] T. Mazur, On the complex manifolds of Bergman type, in: Classical Analysis, Proc. 6th Symposium (23-29 September 1991, Poland), World Scientific, 1993, 132-138. 
  17. [17] T. Mazur and M. Skwarczyński, Spectral properties of holomorphic automorphisms with fixed point, Glasgow Math. J. 28 (1986), 25-30. Zbl0579.46017
  18. [18] A. Odzijewicz, On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577-597. Zbl0645.53044
  19. [19] Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134. Zbl0739.46010
  20. [20] Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. Math. Sci. 15 (1992), 1-14. Zbl0749.32019
  21. [21] W. Rudin, Function Theory in the Unit Ball of n , Springer, New York, 1980. 
  22. [22] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 89 (1983), 74-78. Zbl0595.46026
  23. [23] S. Saitoh, One approach to some general integral transforms and its applications, Integral Transforms and Special Functions 3 (1995), 49-84. Zbl0837.30002
  24. [24] M. Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. 173 (1980). 
  25. [25] M. Skwarczyński, Alternating projections between a strip and a half-plane, Math. Proc. Cambridge Philos. Soc. 102 (1987), 121-129. Zbl0625.30012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.