# Perfect sets of finite class without the extension property

Studia Mathematica (1997)

- Volume: 126, Issue: 2, page 161-170
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topGoncharov, A.. "Perfect sets of finite class without the extension property." Studia Mathematica 126.2 (1997): 161-170. <http://eudml.org/doc/216449>.

@article{Goncharov1997,

abstract = {We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.},

author = {Goncharov, A.},

journal = {Studia Mathematica},

keywords = {generalized Cantor sets; extension property; extension operator; potential theory},

language = {eng},

number = {2},

pages = {161-170},

title = {Perfect sets of finite class without the extension property},

url = {http://eudml.org/doc/216449},

volume = {126},

year = {1997},

}

TY - JOUR

AU - Goncharov, A.

TI - Perfect sets of finite class without the extension property

JO - Studia Mathematica

PY - 1997

VL - 126

IS - 2

SP - 161

EP - 170

AB - We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.

LA - eng

KW - generalized Cantor sets; extension property; extension operator; potential theory

UR - http://eudml.org/doc/216449

ER -

## References

top- [1] L. Białas-Cież, Equivalence of Markov's property and Hölder continuity of the Green function for Cantor-type sets, East J. Approx. 1 (1995), 249-253. Zbl0872.41005
- [2] E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300. Zbl0404.58010
- [3] A. Goncharov, A compact set without Markov’s property but with an extension operator for ${C}^{\infty}$ functions, Studia Math. 119 (1996), 27-35. Zbl0857.46013
- [4] A. Goncharov and M. Kocatepe, Isomorphic classification of the spaces of Whitney functions, to appear. Zbl0931.46019
- [5] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 5th ed., Academic Press, 1994. Zbl0918.65002
- [6] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, 1976.
- [7] N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966 (in Russian). Zbl0253.31001
- [8] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992.
- [9] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16 (4) (1961), 59-127. Zbl0104.08601
- [10] R. Nevanlinna, Analytic Functions, Springer, 1970. Zbl0199.12501
- [11] Z. Ogrodzka, On simultaneous extension of infinitely differentiable functions, Studia Math. 28, (1967), 193-207. Zbl0177.40802
- [12] W. Pawłucki and W. Pleśniak, Markov’s inequality and ${C}^{\infty}$ functions on sets with polynomial cusps, Math. Ann. 275, (1986), 467-480. Zbl0579.32020
- [13] W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. Zbl0739.30008
- [14] R. T. Seeley, Extension of ${C}^{\infty}$ functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626. Zbl0127.28403
- [15] J. Siciak, Compact sets in ${\mathbb{R}}^{n}$ admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441-448.
- [16] M. Tidten, Fortsetzungen von ${C}^{\infty}$-Funktionen, welche auf einer abgeschlossenen Menge in ${\mathbb{R}}^{n}$ definiert sind, Manuscripta Math. 27 (1979), 291-312.
- [17] M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu E(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.
- [18] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. Zbl0337.46015
- [19] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Sev. Kavkaz. Nauch. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.