Perfect sets of finite class without the extension property

A. Goncharov

Studia Mathematica (1997)

  • Volume: 126, Issue: 2, page 161-170
  • ISSN: 0039-3223

Abstract

top
We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.

How to cite

top

Goncharov, A.. "Perfect sets of finite class without the extension property." Studia Mathematica 126.2 (1997): 161-170. <http://eudml.org/doc/216449>.

@article{Goncharov1997,
abstract = {We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.},
author = {Goncharov, A.},
journal = {Studia Mathematica},
keywords = {generalized Cantor sets; extension property; extension operator; potential theory},
language = {eng},
number = {2},
pages = {161-170},
title = {Perfect sets of finite class without the extension property},
url = {http://eudml.org/doc/216449},
volume = {126},
year = {1997},
}

TY - JOUR
AU - Goncharov, A.
TI - Perfect sets of finite class without the extension property
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 2
SP - 161
EP - 170
AB - We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.
LA - eng
KW - generalized Cantor sets; extension property; extension operator; potential theory
UR - http://eudml.org/doc/216449
ER -

References

top
  1. [1] L. Białas-Cież, Equivalence of Markov's property and Hölder continuity of the Green function for Cantor-type sets, East J. Approx. 1 (1995), 249-253. Zbl0872.41005
  2. [2] E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300. Zbl0404.58010
  3. [3] A. Goncharov, A compact set without Markov’s property but with an extension operator for C functions, Studia Math. 119 (1996), 27-35. Zbl0857.46013
  4. [4] A. Goncharov and M. Kocatepe, Isomorphic classification of the spaces of Whitney functions, to appear. Zbl0931.46019
  5. [5] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 5th ed., Academic Press, 1994. Zbl0918.65002
  6. [6] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, 1976. 
  7. [7] N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966 (in Russian). Zbl0253.31001
  8. [8] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992. 
  9. [9] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16 (4) (1961), 59-127. Zbl0104.08601
  10. [10] R. Nevanlinna, Analytic Functions, Springer, 1970. Zbl0199.12501
  11. [11] Z. Ogrodzka, On simultaneous extension of infinitely differentiable functions, Studia Math. 28, (1967), 193-207. Zbl0177.40802
  12. [12] W. Pawłucki and W. Pleśniak, Markov’s inequality and C functions on sets with polynomial cusps, Math. Ann. 275, (1986), 467-480. Zbl0579.32020
  13. [13] W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. Zbl0739.30008
  14. [14] R. T. Seeley, Extension of C functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626. Zbl0127.28403
  15. [15] J. Siciak, Compact sets in n admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441-448. 
  16. [16] M. Tidten, Fortsetzungen von C -Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312. 
  17. [17] M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu E(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81. 
  18. [18] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. Zbl0337.46015
  19. [19] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Sev. Kavkaz. Nauch. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.