Spaces of holomorphic mappings on Banach spaces with a Schauder basis
Studia Mathematica (1997)
- Volume: 122, Issue: 2, page 139-151
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMujica, Jorge. "Spaces of holomorphic mappings on Banach spaces with a Schauder basis." Studia Mathematica 122.2 (1997): 139-151. <http://eudml.org/doc/216366>.
@article{Mujica1997,
abstract = {We show that if U is a balanced open subset of a separable Banach space with the bounded approximation property, then the space ℋ(U) of all holomorphic functions on U, with the Nachbin compact-ported topology, is always bornological.},
author = {Mujica, Jorge},
journal = {Studia Mathematica},
keywords = {spaces of holomorphic mappings; Schauder basis; Nachbin and bornological topologies coincide; bounded approximation property},
language = {eng},
number = {2},
pages = {139-151},
title = {Spaces of holomorphic mappings on Banach spaces with a Schauder basis},
url = {http://eudml.org/doc/216366},
volume = {122},
year = {1997},
}
TY - JOUR
AU - Mujica, Jorge
TI - Spaces of holomorphic mappings on Banach spaces with a Schauder basis
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 2
SP - 139
EP - 151
AB - We show that if U is a balanced open subset of a separable Banach space with the bounded approximation property, then the space ℋ(U) of all holomorphic functions on U, with the Nachbin compact-ported topology, is always bornological.
LA - eng
KW - spaces of holomorphic mappings; Schauder basis; Nachbin and bornological topologies coincide; bounded approximation property
UR - http://eudml.org/doc/216366
ER -
References
top- [1] R. Aron, L. A. Moraes and R. Ryan, Factorization of holomorphic mappings in infinite dimensions, Math. Ann. 277 (1987), 617-628. Zbl0611.46053
- [2] S. B. Chae, Holomorphic germs on Banach spaces, Ann. Inst. Fourier (Grenoble) 21 (3) (1971), 107-141. Zbl0208.15002
- [3] G. Coeuré, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, ibid. 20 (1) (1970), 361-432. Zbl0187.39003
- [4] G. Coeuré, Fonctionnelles analytiques sur certains espaces de Banach, ibid. 21 (2) (1971), 15-21. Zbl0205.41303
- [5] S. Dineen, The Cartan-Thullen theorem for Banach spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1970), 667-676. Zbl0235.46037
- [6] S. Dineen, Holomorphy types on a Banach space, Studia Math. 39 (1971), 241-288. Zbl0235.32013
- [7] S. Dineen, Bounding subsets of a Banach space, Math. Ann. 192 (1971), 61-70. Zbl0202.12803
- [8] S. Dineen, Holomorphic functions on -modules, ibid. 196 (1972), 106-116. Zbl0219.46021
- [9] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. Zbl0484.46044
- [10] L. Gruman et C. Kiselman, Le problème de Levi dans les espaces de Banach à base, C. R. Acad. Sci. Paris 274 (1972), 1296-1299.
- [11] Y. Hervier, Sur le problème de Levi pour les espaces étalés banachiques, ibid. 275 (1972), 821-824. Zbl0243.32018
- [12] W. Johnson, H. Rosenthal and M. Zippin, On bases, finite-dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. Zbl0217.16103
- [13] B. Josefson, A counterexample in the Levi problem, in: Proceedings on Infinite Dimensional Holomorphy, T. Hayden and T. Suffridge (eds.), Lecture Notes in Math. 364, Springer, Berlin, 1974, 168-177.
- [14] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968.
- [15] J. Mujica, Holomorphic approximation in Fréchet spaces with basis, J. London Math. Soc. 29 (1984), 113-126. Zbl0546.46022
- [16] J. Mujica, Holomorphic approximation in infinite-dimensional Riemann domains, Studia Math. 82 (1985), 107-134. Zbl0584.32035
- [17] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, Amsterdam, 1986. Zbl0586.46040
- [18] L. Nachbin, On the topology of the space of all holomorphic functions on a given open subset, Indag. Math. 29 (1967), 366-368. Zbl0147.11402
- [19] L. Nachbin, Concerning spaces of holomorphic mappings, lecture notes, Rutgers Univ., New Brunswick, N.J., 1970. Zbl0258.46027
- [20] L. Nachbin, Sur les espaces vectoriels topologiques d'applications continues, C. R. Acad. Sci. Paris 271 (1970), 596-598. Zbl0205.12402
- [21] P. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North-Holland Math. Stud. 3, North-Holland, Amsterdam, 1973. Zbl0251.46049
- [22] P. Noverraz, Approximation of holomorphic or plurisubharmonic functions in certain Banach spaces, in: Proceedings on Infinite Dimensional Holomorphy, T. Hayden and T. Suffridge (eds.), Lecture Notes in Math. 364, Springer, Berlin, 1974, 178-185. Zbl0284.46018
- [23] A. Pełczyński, On the impossibility of embedding of the space L in certain Banach spaces, Colloq. Math. 8 (1961), 199-203. Zbl0099.09501
- [24] A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239-243. Zbl0223.46019
- [25] M. Schottenloher, The Levi problem for domains spread over locally convex spaces with a finite-dimensional Schauder decomposition, Ann. Inst. Fourier (Grenoble) 26 (4) (1976), 207-237. Zbl0309.32013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.