Spaces of holomorphic mappings on Banach spaces with a Schauder basis

Jorge Mujica

Studia Mathematica (1997)

  • Volume: 122, Issue: 2, page 139-151
  • ISSN: 0039-3223

Abstract

top
We show that if U is a balanced open subset of a separable Banach space with the bounded approximation property, then the space ℋ(U) of all holomorphic functions on U, with the Nachbin compact-ported topology, is always bornological.

How to cite

top

Mujica, Jorge. "Spaces of holomorphic mappings on Banach spaces with a Schauder basis." Studia Mathematica 122.2 (1997): 139-151. <http://eudml.org/doc/216366>.

@article{Mujica1997,
abstract = {We show that if U is a balanced open subset of a separable Banach space with the bounded approximation property, then the space ℋ(U) of all holomorphic functions on U, with the Nachbin compact-ported topology, is always bornological.},
author = {Mujica, Jorge},
journal = {Studia Mathematica},
keywords = {spaces of holomorphic mappings; Schauder basis; Nachbin and bornological topologies coincide; bounded approximation property},
language = {eng},
number = {2},
pages = {139-151},
title = {Spaces of holomorphic mappings on Banach spaces with a Schauder basis},
url = {http://eudml.org/doc/216366},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Mujica, Jorge
TI - Spaces of holomorphic mappings on Banach spaces with a Schauder basis
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 2
SP - 139
EP - 151
AB - We show that if U is a balanced open subset of a separable Banach space with the bounded approximation property, then the space ℋ(U) of all holomorphic functions on U, with the Nachbin compact-ported topology, is always bornological.
LA - eng
KW - spaces of holomorphic mappings; Schauder basis; Nachbin and bornological topologies coincide; bounded approximation property
UR - http://eudml.org/doc/216366
ER -

References

top
  1. [1] R. Aron, L. A. Moraes and R. Ryan, Factorization of holomorphic mappings in infinite dimensions, Math. Ann. 277 (1987), 617-628. Zbl0611.46053
  2. [2] S. B. Chae, Holomorphic germs on Banach spaces, Ann. Inst. Fourier (Grenoble) 21 (3) (1971), 107-141. Zbl0208.15002
  3. [3] G. Coeuré, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, ibid. 20 (1) (1970), 361-432. Zbl0187.39003
  4. [4] G. Coeuré, Fonctionnelles analytiques sur certains espaces de Banach, ibid. 21 (2) (1971), 15-21. Zbl0205.41303
  5. [5] S. Dineen, The Cartan-Thullen theorem for Banach spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1970), 667-676. Zbl0235.46037
  6. [6] S. Dineen, Holomorphy types on a Banach space, Studia Math. 39 (1971), 241-288. Zbl0235.32013
  7. [7] S. Dineen, Bounding subsets of a Banach space, Math. Ann. 192 (1971), 61-70. Zbl0202.12803
  8. [8] S. Dineen, Holomorphic functions on ( c 0 , X b ) -modules, ibid. 196 (1972), 106-116. Zbl0219.46021
  9. [9] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. Zbl0484.46044
  10. [10] L. Gruman et C. Kiselman, Le problème de Levi dans les espaces de Banach à base, C. R. Acad. Sci. Paris 274 (1972), 1296-1299. 
  11. [11] Y. Hervier, Sur le problème de Levi pour les espaces étalés banachiques, ibid. 275 (1972), 821-824. Zbl0243.32018
  12. [12] W. Johnson, H. Rosenthal and M. Zippin, On bases, finite-dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. Zbl0217.16103
  13. [13] B. Josefson, A counterexample in the Levi problem, in: Proceedings on Infinite Dimensional Holomorphy, T. Hayden and T. Suffridge (eds.), Lecture Notes in Math. 364, Springer, Berlin, 1974, 168-177. 
  14. [14] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968. 
  15. [15] J. Mujica, Holomorphic approximation in Fréchet spaces with basis, J. London Math. Soc. 29 (1984), 113-126. Zbl0546.46022
  16. [16] J. Mujica, Holomorphic approximation in infinite-dimensional Riemann domains, Studia Math. 82 (1985), 107-134. Zbl0584.32035
  17. [17] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, Amsterdam, 1986. Zbl0586.46040
  18. [18] L. Nachbin, On the topology of the space of all holomorphic functions on a given open subset, Indag. Math. 29 (1967), 366-368. Zbl0147.11402
  19. [19] L. Nachbin, Concerning spaces of holomorphic mappings, lecture notes, Rutgers Univ., New Brunswick, N.J., 1970. Zbl0258.46027
  20. [20] L. Nachbin, Sur les espaces vectoriels topologiques d'applications continues, C. R. Acad. Sci. Paris 271 (1970), 596-598. Zbl0205.12402
  21. [21] P. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North-Holland Math. Stud. 3, North-Holland, Amsterdam, 1973. Zbl0251.46049
  22. [22] P. Noverraz, Approximation of holomorphic or plurisubharmonic functions in certain Banach spaces, in: Proceedings on Infinite Dimensional Holomorphy, T. Hayden and T. Suffridge (eds.), Lecture Notes in Math. 364, Springer, Berlin, 1974, 178-185. Zbl0284.46018
  23. [23] A. Pełczyński, On the impossibility of embedding of the space L in certain Banach spaces, Colloq. Math. 8 (1961), 199-203. Zbl0099.09501
  24. [24] A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239-243. Zbl0223.46019
  25. [25] M. Schottenloher, The Levi problem for domains spread over locally convex spaces with a finite-dimensional Schauder decomposition, Ann. Inst. Fourier (Grenoble) 26 (4) (1976), 207-237. Zbl0309.32013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.