Holomorphic germs on Banach spaces

Chae Soo Bong

Annales de l'institut Fourier (1971)

  • Volume: 21, Issue: 3, page 107-141
  • ISSN: 0373-0956

Abstract

top
Let E and F be two complex Banach spaces, U a nonempty subset of E and K a compact subset of E . The concept of holomorphy type θ between E and F , and the natural locally convex topology 𝒯 ω , θ on the vector space θ ( U , F ) of all holomorphic mappings of a given holomorphy type θ from U to F were considered first by L. Nachbin. Motived by his work, we introduce the locally convex space θ ( K , F ) of all germs of holomorphic mappings into F around K of a given holomorphy type θ , and study its interplay with θ ( U , F ) and some other properties of the topology 𝒯 ω , θ .

How to cite

top

Chae Soo Bong. "Holomorphic germs on Banach spaces." Annales de l'institut Fourier 21.3 (1971): 107-141. <http://eudml.org/doc/74041>.

@article{ChaeSooBong1971,
abstract = {Let $E$ and $F$ be two complex Banach spaces, $U$ a nonempty subset of $E$ and $K$ a compact subset of $E$. The concept of holomorphy type $\theta $ between $E$ and $F$, and the natural locally convex topology $\{\cal T\}_\{\omega ,\theta \}$ on the vector space $\{\cal H\}_\theta (U,F)$ of all holomorphic mappings of a given holomorphy type $\theta $ from $U$ to $F$ were considered first by L. Nachbin. Motived by his work, we introduce the locally convex space $\{\cal H\}_\theta (K,F)$ of all germs of holomorphic mappings into $F$ around $K$ of a given holomorphy type $\theta $, and study its interplay with $\{\cal H\}_\theta (U,F)$ and some other properties of the topology $\{\cal T\}_\{\omega ,\theta \}$.},
author = {Chae Soo Bong},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {107-141},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic germs on Banach spaces},
url = {http://eudml.org/doc/74041},
volume = {21},
year = {1971},
}

TY - JOUR
AU - Chae Soo Bong
TI - Holomorphic germs on Banach spaces
JO - Annales de l'institut Fourier
PY - 1971
PB - Association des Annales de l'Institut Fourier
VL - 21
IS - 3
SP - 107
EP - 141
AB - Let $E$ and $F$ be two complex Banach spaces, $U$ a nonempty subset of $E$ and $K$ a compact subset of $E$. The concept of holomorphy type $\theta $ between $E$ and $F$, and the natural locally convex topology ${\cal T}_{\omega ,\theta }$ on the vector space ${\cal H}_\theta (U,F)$ of all holomorphic mappings of a given holomorphy type $\theta $ from $U$ to $F$ were considered first by L. Nachbin. Motived by his work, we introduce the locally convex space ${\cal H}_\theta (K,F)$ of all germs of holomorphic mappings into $F$ around $K$ of a given holomorphy type $\theta $, and study its interplay with ${\cal H}_\theta (U,F)$ and some other properties of the topology ${\cal T}_{\omega ,\theta }$.
LA - eng
UR - http://eudml.org/doc/74041
ER -

References

top
  1. [A] H. ALEXANDER, Analytic functions on a Banach space, Thesis, University of California at Berkeley (1968). 
  2. [Ch] S.B. CHAE, Sur les espaces localement convexes de germes holomorphes, C.R. Ac. Paris, 271 (1970), 990-991. Zbl0201.15603MR45 #876
  3. [Ar] R.M. ARON, Topological properties of the space of holomorphic mappings, Thesis, University of Rochester (1970). 
  4. [B] J.A. BARROSO, Topologia em espacos de aplicações holomorfas entre espaços localmente convexos, Thesis, Instituto de Matematica Pura e Aplicada, Rio de Janeiro (1970). 
  5. [C] G. COEURE, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, Thèse, Université de Nancy (1969). Zbl0187.39003
  6. [D1] S. DINEEN, Holomorphy type on a Banach space, Thesis, University of Maryland (1969). 
  7. [D2] S. DINEEN, Holomorphic functions on a Banach space, Bulletin of American Mathematical Society (1970). Zbl0237.46027MR41 #4216
  8. [D3] S. DINEEN, The Cartan-Thullen theorem for Banach spaces, to appear Annali della Scuola Normale Superiore de Pisa. Zbl0235.46037
  9. [D4] S. DINEEN, Bounding subsets of a Banach space (to appear). Zbl0202.12803
  10. [DS] J. DIEUDONNE, L. SCHWARTZ, La dualité dans les espaces (F) et (LF), Annales de l'Institut Fourier, Grenoble, t. 1 (1949), 61-101. Zbl0035.35501MR12,417d
  11. [GJ] L. GILLMAN, M. JERISON, Rings of continuous functions, Van Nostrand, Princeton (1960). Zbl0093.30001MR22 #6994
  12. [Gr] A. GROTHENDIECK, Sur les espaces (F) et (DF), Summa Brasiliensis Mathematicae, v. 3 (1954), 57-122. Zbl0058.09803MR17,765b
  13. [Gr2] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Memoirs of American Mathematical Society, n° 16 (1955). Zbl0064.35501MR17,763c
  14. [G] C.P. GUPTA, Malgrange's theorem for nuclearly entire functions of bounded type on a Banach space, Thesis, University of Rochester (1966). Reproduced in Notas de Matematica, n° 37 (1968), Instituto de Matematica Pura e Aplicada, Rio de Janeiro. Zbl0182.45402
  15. [H] J. HORVATH, Topological vector spaces and distributions, v. 1., Addison-Wesley, Mass. (1966). Zbl0143.15101MR34 #4863
  16. [Hr] L. HÖRMANDER, Introduction to complex analysis in several variables, Van Nostrand, Princeton (1966). Zbl0138.06203
  17. [L] P. LELONG, Fonctions et applications de type exponentiel dans les espaces vectoriels topologiques, C.R.A.c Paris 169 (1969). Zbl0179.19001
  18. [M1] A. MARTINEAU, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, Journal d'Analyse Mathématique, v. 11 (1963), 1-164. Zbl0124.31804MR28 #2437
  19. [M2] A. MARTINEAU, Sur la topologie des espaces de fonctions holomorphes, Mathematische Annalen, v. 163 (1966), 62-88. Zbl0138.38101MR32 #8109
  20. [Mt] M.C. MATOS, Holomorphic mappings and domains of holomorphy, Thesis, University of Rochester (1970). Zbl0233.32004
  21. [N1] L. NACHBIN, Topological vector spaces of continuous functions, Proc. Nat. Acd. Sci. USA. v. 40 (1954), 471-4. Zbl0055.09803MR16,156h
  22. [N2] L. NACHBIN, Lectures on topological vector spaces, Lecture note, University of Rochester (1963). 
  23. [N3] L. NACHBIN, Lectures on the theory of distributions, University of Rochester (1963), Reproduced by Universidade do Recife (1964) ; North-Holland Publishing Company (1970). Zbl0135.16401
  24. [N4] L. NACHBIN, On the topology of the space of all holomorphic functions on a given open subset, Indagationes Mathematicae, Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, Series A 70 (1967), 366-368. Zbl0147.11402MR35 #5910
  25. [N5] L. NACHBIN, On spaces of holomorphic functions of a given type, Proceedings of the Conference on Functional Analysisis, University of California at Irvine (1966), 50-60. Thompson Book Company (1967). Zbl0212.14604
  26. [N6] L. NACHBIN, Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, v. 47 (1969), Springer-Verlag, Berlin. Zbl0172.39902MR40 #7787
  27. [N7] L. NACHBIN, Convolution operators in spaces of nuclearly entire functions on a Banach space, Proceedings of the Symposium on Functional Analysis and Related Fields, University of Chicago (1969), Springer-Verlag, Berlin (in press). 
  28. [N8] L. NACHBIN, Holomorphic functions, domains of holomorphy and local properties, North-Holland Publishing Company (1970). Zbl0208.10301MR43 #558
  29. [N9] L. NACHBIN, Concerning holomorphy types for Banach spaces, Studia Mathematica, Proceedings of the Colloquim on Nuclear Spaces and Ideals in Operator Algebras held in Warsaw, Poland, June 18-25, 1969. 
  30. [NG] L. NACHBIN, C.P. GUPTA, On Malgrange's theorem for nuclearly entire functions (to appear). 
  31. [Nr] P. NOVERRAZ, Fonctions plurisousharmonique et analytiques dans les espaces vectoriels topologiques complexes, Annales de l'Institut Fourier, Grenoble, 19,2 (1969), 419-493. Zbl0176.09903MR42 #537
  32. [P] H.R. PITT, A note on bilinear forms, Journal London Math. Society, v. 11 (1936), 174-180. Zbl0014.31201JFM62.0209.01
  33. [R] H.P. ROSENTHAL, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp (µ) to Lr (v), Journal of Functional Analysis 4 (1969), 176-214. Zbl0185.20303MR40 #3277
  34. [T] F. TREVES, Topological vector spaces, distributions and kernels, Academic Press, New York and London (1967). Zbl0171.10402MR37 #726
  35. [Z] M.A. ZORN, Characterization of analytic functions in Banach spaces, Annals of Mathematics, 12 (1945), 585-593. Zbl0063.08407MR7,251e

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.