The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Distribution and rearrangement estimates of the maximal function and interpolation”

On boundedness properties of certain maximal operators

M. Menárguez (1995)

Colloquium Mathematicae

Similarity:

It is known that the weak type (1,1) for the Hardy-Littlewood maximal operator can be obtained from the weak type (1,1) over Dirac deltas. This theorem is due to M. de Guzmán. In this paper, we develop a technique that allows us to prove such a theorem for operators and measure spaces in which Guzmán's technique cannot be used.

Norm inequalities for off-centered maximal operators.

Richard L. Wheeden (1993)

Publicacions Matemàtiques

Similarity:

Sufficient conditions are derived in order that there exist strong-type weighted norm inequalities for some off-centered maximal functions. The maximal functions are of Hardy-Littlewood and fractional types taken over starlike sets in R. The sufficient conditions are close to necessary and extend some previously known weak-type results.

Improved Muckenhoupt-Wheeden inequality and weighted inequalities for potential operators.

Y. Rakotondratsimba (1995)

Publicacions Matemàtiques

Similarity:

By a variant of the standard good λ inequality, we prove the Muckenhoupt-Wheeden inequality for measures which are not necessarily in the Muckenhoupt class. Moreover we can deal with a general potential operator, and consequently we obtain a suitable approach to the two weight inequality for such an operator when one of the weight functions satisfies a reverse doubling condition.

A sharp rearrangement inequality for the fractional maximal operator

A. Cianchi, R. Kerman, B. Opic, L. Pick (2000)

Studia Mathematica

Similarity:

We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, M γ , by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of M γ between classical Lorentz spaces.

Norm inequalities for the minimal and maximal operator, and differentiation of the integral.

David Cruz-Uribe, Christoph J. Neugebauer, Victor Olesen (1997)

Publicacions Matemàtiques

Similarity:

We study the weighted norm inequalities for the minimal operator, a new operator analogous to the Hardy-Littlewood maximal operator which arose in the study of reverse Hölder inequalities. We characterize the classes of weights which govern the strong and weak-type norm inequalities for the minimal operator in the two weight case, and show that these classes are the same. We also show that a generalization of the minimal operator can be used to obtain information about the differentiability...