Degree theory for VMO maps on metric spaces
Francesco Uguzzoni; Ermanno Lanconelli
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 3, page 569-601
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topUguzzoni, Francesco, and Lanconelli, Ermanno. "Degree theory for VMO maps on metric spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3 (2002): 569-601. <http://eudml.org/doc/84481>.
@article{Uguzzoni2002,
abstract = {We construct a degree theory for Vanishing Mean Oscillation functions in metric spaces, following some ideas of Brezis & Nirenberg. The underlying sets of our metric spaces are bounded open subsets of $\mathbb \{R\}^N$ and their boundaries. Then, we apply our results in order to analyze the surjectivity properties of the $L$-harmonic extensions of VMO vector-valued functions. The operators $L$ we are dealing with are second order linear differential operators sum of squares of vector fields satisfying the hypoellipticity condition of Hörmander.},
author = {Uguzzoni, Francesco, Lanconelli, Ermanno},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {trace problem},
language = {eng},
number = {3},
pages = {569-601},
publisher = {Scuola normale superiore},
title = {Degree theory for VMO maps on metric spaces},
url = {http://eudml.org/doc/84481},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Uguzzoni, Francesco
AU - Lanconelli, Ermanno
TI - Degree theory for VMO maps on metric spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 3
SP - 569
EP - 601
AB - We construct a degree theory for Vanishing Mean Oscillation functions in metric spaces, following some ideas of Brezis & Nirenberg. The underlying sets of our metric spaces are bounded open subsets of $\mathbb {R}^N$ and their boundaries. Then, we apply our results in order to analyze the surjectivity properties of the $L$-harmonic extensions of VMO vector-valued functions. The operators $L$ we are dealing with are second order linear differential operators sum of squares of vector fields satisfying the hypoellipticity condition of Hörmander.
LA - eng
KW - trace problem
UR - http://eudml.org/doc/84481
ER -
References
top- [1] H. Bahouri – J. Y. Chemin – C. J. Xu, Trace and trace lifting theorems in weight Sobolev spaces, preprint. Zbl1089.35016MR2171730
- [2] S. Berhanu – I. Pesenson, The trace problem for vector fields satisfying Hörmander’s condition, Math. Z. 231 (1999), 103-122. Zbl0924.46026MR1696759
- [3] F. Bethuel – H. Brezis – F. Hélein, Ginzburg-Landau vortices, In: “Progress in Nonlinear Differential Equations and their Applications” 13 Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
- [4] A. Bonfiglioli – E. Lanconelli – F. Uguzzoni, Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, to appear in Adv. Differential Equations. Zbl1036.35061MR1919700
- [5] A. Bonfiglioli – F. Uguzzoni, Families of diffeomorphic sub-Laplacians and free Carnot groups, preprint. Zbl1065.35102MR2050190
- [6] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier Grenoble 19 (1969), 277-304. Zbl0176.09703MR262881
- [7] H. Brezis – J. M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983), 203-215. Zbl0532.58006MR728866
- [8] H. Brezis – L. Nirenberg, Degree theory and BMO; Part I: compact manifolds without boundaries, Selecta Math. 1 (1995), 197-263. Zbl0852.58010MR1354598
- [9] H. Brezis – L. Nirenberg, Degree theory and BMO; Part II: compact manifolds with boundaries, Selecta Math. 2 (1996), 309-368. Zbl0868.58017MR1422201
- [10] S. M. Buckley, Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math. 79 (1999), 215-240. Zbl0990.46019MR1749313
- [11] L. Capogna – N. Garofalo – D. M. Nhieu, A version of a theorem of Dahlberg for the subelliptic Dirichlet problem, Math. Res. Lett. 5 (1998), 541-549. Zbl0934.22017MR1653336
- [12] C. Castaing – M. Valadier, “Convex analysis and measurable multifunctions”, Lecture Notes in Math. 580, Springer-Verlag, New York, 1977. Zbl0346.46038MR467310
- [13] D. Christodoulou, On the geometry and dynamics of crystalline continua, Ann. Inst. H. Poincaré, Phys. Théor. 69 (1998), 335-358. Zbl0916.73013MR1648987
- [14] R. Coifman – G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer-Verlag, Berlin-New York, 1971. Zbl0224.43006MR499948
- [15] D. Danielli – N. Garofalo – D. M. Nhieu, Trace inequalities for Carnot-Carathéodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 195-252. Zbl0938.46036MR1664688
- [16] D. Danielli – N. Garofalo – D. M. Nhieu, Sub-elliptic Besov spaces and the characterization of traces on lower dimensional manifolds, preprint. Zbl1001.46020MR1840425
- [17] D. Danielli – N. Garofalo – D. M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, preprint. Zbl1100.43005MR2229731
- [18] H. A. De Kleine – J. E. Girolo, A degree theory for almost continuous functions, Fund. Math. 101 (1978), 39-52. Zbl0404.54008MR512242
- [19] M. Derridj, Un problème aux limites pour une classe d’opérateurs du second ordre hypoelliptiques, Ann. Inst. Fourier Grenoble 21 (1971), 99-148. Zbl0215.45405MR601055
- [20] M. Derridj, Sur un théorème de traces, Ann. Inst. Fourier Grenoble 22 (1972), 73-83. Zbl0231.46076MR343011
- [21] M. J. Esteban – S. Müller, Sobolev maps with integer degree and applications to Skyrme’s problem, Proc. Roy. Soc. London Ser. A 436 (1992), 197-201. Zbl0757.49010MR1177129
- [22] C. Fefferman – D. H. Phong, Subelliptic eigenvalue problems, In: “Conference on harmonic analysis in honor of Antoni Zygmund”, Vol. I, II, Wadsworth, 1983, 590-606. Zbl0503.35071MR730094
- [23] B. Franchi, Trace theorems for anisotropic weighted Sobolev spaces in a corner, Math. Nachr. 127 (1986), 25-50. Zbl0628.46029MR861716
- [24] B. Franchi – R. Serapioni – F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. 11-B (1997), 83-117. Zbl0952.49010MR1448000
- [25] L. Gallardo, “Capacités, mouvement Brownien et problème de l’épine de Lebesgue sur les groupes de Lie nilpotents”, Lecture Notes in Math. 928, Springer, Berlin-New York, 1982, 96-120. Zbl0483.60072MR669065
- [26] N. Garofalo – D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot- Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math. 49 (1996), 1081-1144. Zbl0880.35032MR1404326
- [27] M. Giaquinta – G. Modica, – J. Soucek, Remarks on the degree theory, J. Funct. Anal. 125 (1994), 172-200. Zbl0822.55003MR1297018
- [28] L. Greco – T. Iwaniec – C. Sbordone – B. Stroffolini, Degree formulas for maps with nonintegrable Jacobian, Topol. Methods Nonlinear Anal. 6 (1995), 81-95. Zbl0854.58005MR1391946
- [29] P. Hajlasz – P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688. Zbl0954.46022MR1683160
- [30] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986), 503-523. Zbl0614.35066MR850547
- [31] D. Jerison – A. Sánchez-Calle, Subelliptic, second order differential operators, In: “Complex analysis III”, Lecture Notes in Math. 1277 Springer, Berlin, 1987, 46-77. Zbl0634.35017MR922334
- [32] E. Lanconelli – A. E. Kogoj, X-elliptic operators and X-control distances, Ricerche Mat. 49 (2000), 223-243. Zbl1029.35102MR1826225
- [33] E. Lanconelli – D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. 38 (2000), 327-342. Zbl1131.46304MR1785405
- [34] R. Monti – D. Morbidelli, Trace theorems for vector fields, to appear in Math. Z. Zbl1030.46041MR1902060
- [35] R. Monti – F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces, preprint. Zbl1032.49045
- [36] D. Morbidelli, Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields, Studia Math. 139 (2000), 213-244. Zbl0981.46034MR1762582
- [37] U. Mosco, Alcuni aspetti variazionali dei mezzi discontinui, Boll. Un. Mat. Ital. (7) 7-A (1993), 149-198. Zbl0802.35163
- [38] A. Nagel – E. M. Stein – S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. Zbl0578.32044MR793239
- [39] P. Negrini – V. Scornazzani, Wiener criterion for a class of degenerate elliptic operators, J. Differential Equations 66 (1987), 151-164. Zbl0633.35018MR871992
- [40] L. Nirenberg, “Topics in nonlinear functional analysis”, Courant Institute Lecture Notes, New York, 1974. Zbl0286.47037MR488102
- [41] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. Zbl0582.58004MR762360
- [42] F. Uguzzoni – E. Lanconelli, On the Poisson kernel for the Kohn Laplacian, Rend. Mat. Appl. 17 (1997), 659-677. Zbl0908.35020MR1620876
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.