Degree theory for VMO maps on metric spaces

Francesco Uguzzoni; Ermanno Lanconelli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 3, page 569-601
  • ISSN: 0391-173X

Abstract

top
We construct a degree theory for Vanishing Mean Oscillation functions in metric spaces, following some ideas of Brezis & Nirenberg. The underlying sets of our metric spaces are bounded open subsets of N and their boundaries. Then, we apply our results in order to analyze the surjectivity properties of the L -harmonic extensions of VMO vector-valued functions. The operators L we are dealing with are second order linear differential operators sum of squares of vector fields satisfying the hypoellipticity condition of Hörmander.

How to cite

top

Uguzzoni, Francesco, and Lanconelli, Ermanno. "Degree theory for VMO maps on metric spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3 (2002): 569-601. <http://eudml.org/doc/84481>.

@article{Uguzzoni2002,
abstract = {We construct a degree theory for Vanishing Mean Oscillation functions in metric spaces, following some ideas of Brezis & Nirenberg. The underlying sets of our metric spaces are bounded open subsets of $\mathbb \{R\}^N$ and their boundaries. Then, we apply our results in order to analyze the surjectivity properties of the $L$-harmonic extensions of VMO vector-valued functions. The operators $L$ we are dealing with are second order linear differential operators sum of squares of vector fields satisfying the hypoellipticity condition of Hörmander.},
author = {Uguzzoni, Francesco, Lanconelli, Ermanno},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {trace problem},
language = {eng},
number = {3},
pages = {569-601},
publisher = {Scuola normale superiore},
title = {Degree theory for VMO maps on metric spaces},
url = {http://eudml.org/doc/84481},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Uguzzoni, Francesco
AU - Lanconelli, Ermanno
TI - Degree theory for VMO maps on metric spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 3
SP - 569
EP - 601
AB - We construct a degree theory for Vanishing Mean Oscillation functions in metric spaces, following some ideas of Brezis & Nirenberg. The underlying sets of our metric spaces are bounded open subsets of $\mathbb {R}^N$ and their boundaries. Then, we apply our results in order to analyze the surjectivity properties of the $L$-harmonic extensions of VMO vector-valued functions. The operators $L$ we are dealing with are second order linear differential operators sum of squares of vector fields satisfying the hypoellipticity condition of Hörmander.
LA - eng
KW - trace problem
UR - http://eudml.org/doc/84481
ER -

References

top
  1. [1] H. Bahouri – J. Y. Chemin – C. J. Xu, Trace and trace lifting theorems in weight Sobolev spaces, preprint. Zbl1089.35016MR2171730
  2. [2] S. Berhanu – I. Pesenson, The trace problem for vector fields satisfying Hörmander’s condition, Math. Z. 231 (1999), 103-122. Zbl0924.46026MR1696759
  3. [3] F. Bethuel – H. Brezis – F. Hélein, Ginzburg-Landau vortices, In: “Progress in Nonlinear Differential Equations and their Applications” 13 Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
  4. [4] A. Bonfiglioli – E. Lanconelli – F. Uguzzoni, Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, to appear in Adv. Differential Equations. Zbl1036.35061MR1919700
  5. [5] A. Bonfiglioli – F. Uguzzoni, Families of diffeomorphic sub-Laplacians and free Carnot groups, preprint. Zbl1065.35102MR2050190
  6. [6] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier Grenoble 19 (1969), 277-304. Zbl0176.09703MR262881
  7. [7] H. Brezis – J. M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983), 203-215. Zbl0532.58006MR728866
  8. [8] H. Brezis – L. Nirenberg, Degree theory and BMO; Part I: compact manifolds without boundaries, Selecta Math. 1 (1995), 197-263. Zbl0852.58010MR1354598
  9. [9] H. Brezis – L. Nirenberg, Degree theory and BMO; Part II: compact manifolds with boundaries, Selecta Math. 2 (1996), 309-368. Zbl0868.58017MR1422201
  10. [10] S. M. Buckley, Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math. 79 (1999), 215-240. Zbl0990.46019MR1749313
  11. [11] L. Capogna – N. Garofalo – D. M. Nhieu, A version of a theorem of Dahlberg for the subelliptic Dirichlet problem, Math. Res. Lett. 5 (1998), 541-549. Zbl0934.22017MR1653336
  12. [12] C. Castaing – M. Valadier, “Convex analysis and measurable multifunctions”, Lecture Notes in Math. 580, Springer-Verlag, New York, 1977. Zbl0346.46038MR467310
  13. [13] D. Christodoulou, On the geometry and dynamics of crystalline continua, Ann. Inst. H. Poincaré, Phys. Théor. 69 (1998), 335-358. Zbl0916.73013MR1648987
  14. [14] R. Coifman – G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer-Verlag, Berlin-New York, 1971. Zbl0224.43006MR499948
  15. [15] D. Danielli – N. Garofalo – D. M. Nhieu, Trace inequalities for Carnot-Carathéodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 195-252. Zbl0938.46036MR1664688
  16. [16] D. Danielli – N. Garofalo – D. M. Nhieu, Sub-elliptic Besov spaces and the characterization of traces on lower dimensional manifolds, preprint. Zbl1001.46020MR1840425
  17. [17] D. Danielli – N. Garofalo – D. M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, preprint. Zbl1100.43005MR2229731
  18. [18] H. A. De Kleine – J. E. Girolo, A degree theory for almost continuous functions, Fund. Math. 101 (1978), 39-52. Zbl0404.54008MR512242
  19. [19] M. Derridj, Un problème aux limites pour une classe d’opérateurs du second ordre hypoelliptiques, Ann. Inst. Fourier Grenoble 21 (1971), 99-148. Zbl0215.45405MR601055
  20. [20] M. Derridj, Sur un théorème de traces, Ann. Inst. Fourier Grenoble 22 (1972), 73-83. Zbl0231.46076MR343011
  21. [21] M. J. Esteban – S. Müller, Sobolev maps with integer degree and applications to Skyrme’s problem, Proc. Roy. Soc. London Ser. A 436 (1992), 197-201. Zbl0757.49010MR1177129
  22. [22] C. Fefferman – D. H. Phong, Subelliptic eigenvalue problems, In: “Conference on harmonic analysis in honor of Antoni Zygmund”, Vol. I, II, Wadsworth, 1983, 590-606. Zbl0503.35071MR730094
  23. [23] B. Franchi, Trace theorems for anisotropic weighted Sobolev spaces in a corner, Math. Nachr. 127 (1986), 25-50. Zbl0628.46029MR861716
  24. [24] B. Franchi – R. Serapioni – F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. 11-B (1997), 83-117. Zbl0952.49010MR1448000
  25. [25] L. Gallardo, “Capacités, mouvement Brownien et problème de l’épine de Lebesgue sur les groupes de Lie nilpotents”, Lecture Notes in Math. 928, Springer, Berlin-New York, 1982, 96-120. Zbl0483.60072MR669065
  26. [26] N. Garofalo – D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot- Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math. 49 (1996), 1081-1144. Zbl0880.35032MR1404326
  27. [27] M. Giaquinta – G. Modica, – J. Soucek, Remarks on the degree theory, J. Funct. Anal. 125 (1994), 172-200. Zbl0822.55003MR1297018
  28. [28] L. Greco – T. Iwaniec – C. Sbordone – B. Stroffolini, Degree formulas for maps with nonintegrable Jacobian, Topol. Methods Nonlinear Anal. 6 (1995), 81-95. Zbl0854.58005MR1391946
  29. [29] P. Hajlasz – P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688. Zbl0954.46022MR1683160
  30. [30] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986), 503-523. Zbl0614.35066MR850547
  31. [31] D. Jerison – A. Sánchez-Calle, Subelliptic, second order differential operators, In: “Complex analysis III”, Lecture Notes in Math. 1277 Springer, Berlin, 1987, 46-77. Zbl0634.35017MR922334
  32. [32] E. Lanconelli – A. E. Kogoj, X-elliptic operators and X-control distances, Ricerche Mat. 49 (2000), 223-243. Zbl1029.35102MR1826225
  33. [33] E. Lanconelli – D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. 38 (2000), 327-342. Zbl1131.46304MR1785405
  34. [34] R. Monti – D. Morbidelli, Trace theorems for vector fields, to appear in Math. Z. Zbl1030.46041MR1902060
  35. [35] R. Monti – F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces, preprint. Zbl1032.49045
  36. [36] D. Morbidelli, Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields, Studia Math. 139 (2000), 213-244. Zbl0981.46034MR1762582
  37. [37] U. Mosco, Alcuni aspetti variazionali dei mezzi discontinui, Boll. Un. Mat. Ital. (7) 7-A (1993), 149-198. Zbl0802.35163
  38. [38] A. Nagel – E. M. Stein – S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. Zbl0578.32044MR793239
  39. [39] P. Negrini – V. Scornazzani, Wiener criterion for a class of degenerate elliptic operators, J. Differential Equations 66 (1987), 151-164. Zbl0633.35018MR871992
  40. [40] L. Nirenberg, “Topics in nonlinear functional analysis”, Courant Institute Lecture Notes, New York, 1974. Zbl0286.47037MR488102
  41. [41] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. Zbl0582.58004MR762360
  42. [42] F. Uguzzoni – E. Lanconelli, On the Poisson kernel for the Kohn Laplacian, Rend. Mat. Appl. 17 (1997), 659-677. Zbl0908.35020MR1620876

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.