Reflection and the Dirichlet problem on doubly connected regions

Eva Dontová

Časopis pro pěstování matematiky (1988)

  • Volume: 113, Issue: 2, page 122-147
  • ISSN: 0528-2195

How to cite

top

Dontová, Eva. "Reflection and the Dirichlet problem on doubly connected regions." Časopis pro pěstování matematiky 113.2 (1988): 122-147. <http://eudml.org/doc/21704>.

@article{Dontová1988,
author = {Dontová, Eva},
journal = {Časopis pro pěstování matematiky},
keywords = {global reflexion function; analytic Jordan's curve; Dirichlet's problem; multiply connected domain; integral equations},
language = {eng},
number = {2},
pages = {122-147},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Reflection and the Dirichlet problem on doubly connected regions},
url = {http://eudml.org/doc/21704},
volume = {113},
year = {1988},
}

TY - JOUR
AU - Dontová, Eva
TI - Reflection and the Dirichlet problem on doubly connected regions
JO - Časopis pro pěstování matematiky
PY - 1988
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 113
IS - 2
SP - 122
EP - 147
LA - eng
KW - global reflexion function; analytic Jordan's curve; Dirichlet's problem; multiply connected domain; integral equations
UR - http://eudml.org/doc/21704
ER -

References

top
  1. N. Bourbaki, Integration, (Russian), Nauka, Moskva 1967. (1967) Zbl0156.06001MR0223524
  2. E. De Giorgi, Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni, Ricerche Mat. 4 (1955), 95-113. (1955) MR0074499
  3. E. De Giorgi, Su una teoria generale della misura(r- l)-dimensionale in uno spazio ad r dimensioni, Annali di Mat. Pura ed Appl. (4) 36 (1954), 191 - 213. (1954) MR0062214
  4. M. Doni, Non-tangential limits of the double layer potentials, Časopis pěst. mat. 97 (1972), 231-258. (1972) MR0444975
  5. H. Federer, The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1954), 44-76. (1954) MR0013786
  6. H. Federer, A note on the Gauss-Green theoгem, Proc. Amer. Math. Soc. (1958), 447-451. (1958) MR0095245
  7. J. Král, Integral operators in potential theory, Lecture Notes in Math. 823, Springeг-Verlag, Beгlin, 1980. (1980) MR0590244
  8. J. Král, The Fredholm method in potential theoгy, Trans. Ameг. Math. Soc. 125 (1966), 511-547. (1966) MR0209503
  9. J. Král, On the logarithmic potential of the double distribution, Czechoslovak Math. Ј. 14(1964), 306-321. (1964) MR0180690
  10. J. Král, The Fredholm radius of an operatoг in potential theory, Czechoslovak Math. Ј. 15 (1965), 454-474; 565-588. (1965) MR0190363
  11. J. Král, Theoгy of Potential I, (Czech). Stát. pedag. nakl., Praha 1965. (1965) 
  12. J. Král I. Netuka J. Veselý, Theory of Potential II, (Czech), Stát. pedag. nakl., Praha 1972. (1972) 
  13. J. Plemelj, Potentialtheoretische Untersuchungen, B. G. Teubneг, Leipzig, 1911. (1911) 
  14. F. Riesz B. Sz.-Nagy, Lecons ďanalyse fonctionelle, Budapest, 1952. (1952) 
  15. J. M. Sloss, Global reflection for a class of simple closed curves, Pacific Ј. Math., 52 (1974), 247-260. (1974) Zbl0243.30004MR0379807
  16. J. M. Sloss, The plane Dirichlet problem for ceгtain multiply connected regions, Ј. Analyse Math. 28(1975), 86-100. (1975) 
  17. J. M. Sloss J. C. Bruch, Нarmonic appгoximation with Dirichlet data on doubly connected regions, SIAM Ј. Numer. Anal. 14 (1974), 994-1005. (1974) 
  18. B. L. Van der Waerden, Algebra, Springer-Verlag, Beгlin, 1971. (1971) Zbl0221.12001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.