Reflection and the Dirichlet problem on doubly connected regions
Časopis pro pěstování matematiky (1988)
- Volume: 113, Issue: 2, page 122-147
- ISSN: 0528-2195
Access Full Article
topHow to cite
topDontová, Eva. "Reflection and the Dirichlet problem on doubly connected regions." Časopis pro pěstování matematiky 113.2 (1988): 122-147. <http://eudml.org/doc/21704>.
@article{Dontová1988,
author = {Dontová, Eva},
journal = {Časopis pro pěstování matematiky},
keywords = {global reflexion function; analytic Jordan's curve; Dirichlet's problem; multiply connected domain; integral equations},
language = {eng},
number = {2},
pages = {122-147},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Reflection and the Dirichlet problem on doubly connected regions},
url = {http://eudml.org/doc/21704},
volume = {113},
year = {1988},
}
TY - JOUR
AU - Dontová, Eva
TI - Reflection and the Dirichlet problem on doubly connected regions
JO - Časopis pro pěstování matematiky
PY - 1988
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 113
IS - 2
SP - 122
EP - 147
LA - eng
KW - global reflexion function; analytic Jordan's curve; Dirichlet's problem; multiply connected domain; integral equations
UR - http://eudml.org/doc/21704
ER -
References
top- N. Bourbaki, Integration, (Russian), Nauka, Moskva 1967. (1967) Zbl0156.06001MR0223524
- E. De Giorgi, Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni, Ricerche Mat. 4 (1955), 95-113. (1955) MR0074499
- E. De Giorgi, Su una teoria generale della misura(r- l)-dimensionale in uno spazio ad r dimensioni, Annali di Mat. Pura ed Appl. (4) 36 (1954), 191 - 213. (1954) MR0062214
- M. Doni, Non-tangential limits of the double layer potentials, Časopis pěst. mat. 97 (1972), 231-258. (1972) MR0444975
- H. Federer, The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1954), 44-76. (1954) MR0013786
- H. Federer, A note on the Gauss-Green theoгem, Proc. Amer. Math. Soc. (1958), 447-451. (1958) MR0095245
- J. Král, Integral operators in potential theory, Lecture Notes in Math. 823, Springeг-Verlag, Beгlin, 1980. (1980) MR0590244
- J. Král, The Fredholm method in potential theoгy, Trans. Ameг. Math. Soc. 125 (1966), 511-547. (1966) MR0209503
- J. Král, On the logarithmic potential of the double distribution, Czechoslovak Math. Ј. 14(1964), 306-321. (1964) MR0180690
- J. Král, The Fredholm radius of an operatoг in potential theory, Czechoslovak Math. Ј. 15 (1965), 454-474; 565-588. (1965) MR0190363
- J. Král, Theoгy of Potential I, (Czech). Stát. pedag. nakl., Praha 1965. (1965)
- J. Král I. Netuka J. Veselý, Theory of Potential II, (Czech), Stát. pedag. nakl., Praha 1972. (1972)
- J. Plemelj, Potentialtheoretische Untersuchungen, B. G. Teubneг, Leipzig, 1911. (1911)
- F. Riesz B. Sz.-Nagy, Lecons ďanalyse fonctionelle, Budapest, 1952. (1952)
- J. M. Sloss, Global reflection for a class of simple closed curves, Pacific Ј. Math., 52 (1974), 247-260. (1974) Zbl0243.30004MR0379807
- J. M. Sloss, The plane Dirichlet problem for ceгtain multiply connected regions, Ј. Analyse Math. 28(1975), 86-100. (1975)
- J. M. Sloss J. C. Bruch, Нarmonic appгoximation with Dirichlet data on doubly connected regions, SIAM Ј. Numer. Anal. 14 (1974), 994-1005. (1974)
- B. L. Van der Waerden, Algebra, Springer-Verlag, Beгlin, 1971. (1971) Zbl0221.12001
Citations in EuDML Documents
top- Eva Dontová, Reflection and the Neumann problem on doubly connected regions
- Eva Dontová, Miroslav Dont, Josef Král, Reflection and a mixed boundary value problem concerning analytic functions
- Miroslav Dont, Eva Dontová, A numerical solution of the Dirichlet problem on some special doubly connected regions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.