Reflection and the Neumann problem on doubly connected regions

Eva Dontová

Časopis pro pěstování matematiky (1988)

  • Volume: 113, Issue: 2, page 148-168
  • ISSN: 0528-2195

How to cite

top

Dontová, Eva. "Reflection and the Neumann problem on doubly connected regions." Časopis pro pěstování matematiky 113.2 (1988): 148-168. <http://eudml.org/doc/21705>.

@article{Dontová1988,
author = {Dontová, Eva},
journal = {Časopis pro pěstování matematiky},
keywords = {multiply connected domain; global reflexion function; plane curve; generalised domain; Neumann's problem; single integral equation; interior curve},
language = {eng},
number = {2},
pages = {148-168},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Reflection and the Neumann problem on doubly connected regions},
url = {http://eudml.org/doc/21705},
volume = {113},
year = {1988},
}

TY - JOUR
AU - Dontová, Eva
TI - Reflection and the Neumann problem on doubly connected regions
JO - Časopis pro pěstování matematiky
PY - 1988
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 113
IS - 2
SP - 148
EP - 168
LA - eng
KW - multiply connected domain; global reflexion function; plane curve; generalised domain; Neumann's problem; single integral equation; interior curve
UR - http://eudml.org/doc/21705
ER -

References

top
  1. N. Bourbaki, Integration, (Russian), Nauka, Moskva 1967. (1967) Zbl0156.06001MR0223524
  2. E. De Giorgi, Nuovi teoгemi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni, Ricerche Mat. 4 (1955), 95-113. (1955) MR0074499
  3. E. De Giorgi, Su una teoria generale della misura (r - l)-dimensionale in uno spazio ad r dimensioni, Annali di Mat. Pura ed Appl. (4) 36 (1954), 191 - 213. (1954) MR0062214
  4. M. Dont, Non-tangential limits of the double layer potentials, Časopis pӗst. mat. 97 (1972), 231-258. (1972) Zbl0237.31012MR0444975
  5. M. Dont E. Dontová, Invaгiance оf the Fгedhоlm radius оf an оpeгatог in pоtential theоry, Časоpis pěst. mat. 112 (1987), 269-283. (1987) MR0905974
  6. E. Dontová, Reflectiоn and the Dirichlet prоblem оn dоubly cоnnected regiоns, Časоpis pěst. mat. 113 (1988), 122-147. (1988) MR0949040
  7. H. Federer, The Gauss-Green theоrem, Trans. Amer. Math. Sоc. 58 (1954), 44-76. (1954) MR0013786
  8. H. Federer, A nоte оn the Gauss-Green theоrem, Prоc. Ameг. Math. Sоc. 9 (1958), 447-451. (1958) MR0095245
  9. J. Král, Integгal оperatоrs in pоtential theоry, Lecture Nоtes in Math. 823, Spгinger-Veгlag, Berlin 1980. (1980) MR0590244
  10. J. Kráł, The Fredhоlm methоd in pоtentiаl theоry, Tгаns. Amer. Mаth. Sоc. 125 (1966), 511-547. (1966) 
  11. J. Král, On the lоgаrithmic pоtentiаl оf the dоuble distributiоn, Czechоslоvаk Mаth. Ј. 14 (1964), З06-З21. (1964) 
  12. J. Kráł, The Fredhоlm rаdius оf аn оpeгаtог in pоtentiаl theоry, Czechоslоvаk Mаth. Ј. 15 (1965), 454-474; 565-588. (1965) 
  13. J. Král I. Netuka J. Veselý, Theоry оf Pоtentiаl II, (Czech). Stát. pedаg. nаkl., Prаhа 1972. (1972) 
  14. N. S. Landkoff, Elements оf Mоdern Pоtentiаl Theоry, (Russiаn). Nаukа, Mоskvа 1966. (1966) 
  15. F. Riesz B. Sz.-Nagy, Leçоns ďаnаlyse fоnctiоnelle, Budаpest 1952. (1952) 
  16. J. M. Sloss, Glоbаl reflectiоn fоr а clаss оf simple clоsed curves, Pаcific Ј. Mаth. 52 (1974), 247-260. (1974) MR0379807
  17. J. M. Sloss, The plаne Diгichlet prоblem fоr ceгtаin multiply cоnnected regiоns, Ј. Anаlyse Mаth. 28(1975), 86-100. (1975) 
  18. J. M. Sloss J. C. Bruch, Haгmonic appгoximation with Dirichlet data on doubly connected regions, SIAM Ј. Numeг. Anal. 14 (1974), 994-1005. (1974) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.