Continued fractions and transcendental numbers
Boris Adamczewski[1]; Yann Bugeaud[2]; Les Davison[3]
- [1] Université Claude Bernard Lyon 1 Institut Camille Jordan, CNRS Bât. Braconnier, 21 avenue Claude Bernard 69622 VILLEURBANNE Cedex (FRANCE)
- [2] Université Louis Pasteur UFR de mathématiques 67084 STRASBOURG Cedex (FRANCE)
- [3] Laurentian University Department of Mathematics and Computer Science Sudbury, Ontario P3E 2C6 (CANADA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2093-2113
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAdamczewski, Boris, Bugeaud, Yann, and Davison, Les. "Continued fractions and transcendental numbers." Annales de l’institut Fourier 56.7 (2006): 2093-2113. <http://eudml.org/doc/10198>.
@article{Adamczewski2006,
abstract = {The main purpose of this work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to combinatorial transcendence criteria recently obtained by the first two authors in [3].},
affiliation = {Université Claude Bernard Lyon 1 Institut Camille Jordan, CNRS Bât. Braconnier, 21 avenue Claude Bernard 69622 VILLEURBANNE Cedex (FRANCE); Université Louis Pasteur UFR de mathématiques 67084 STRASBOURG Cedex (FRANCE); Laurentian University Department of Mathematics and Computer Science Sudbury, Ontario P3E 2C6 (CANADA)},
author = {Adamczewski, Boris, Bugeaud, Yann, Davison, Les},
journal = {Annales de l’institut Fourier},
keywords = {Continued fractions; transcendental numbers; subspace theorem; transcendence; continued fraction},
language = {eng},
number = {7},
pages = {2093-2113},
publisher = {Association des Annales de l’institut Fourier},
title = {Continued fractions and transcendental numbers},
url = {http://eudml.org/doc/10198},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Adamczewski, Boris
AU - Bugeaud, Yann
AU - Davison, Les
TI - Continued fractions and transcendental numbers
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2093
EP - 2113
AB - The main purpose of this work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to combinatorial transcendence criteria recently obtained by the first two authors in [3].
LA - eng
KW - Continued fractions; transcendental numbers; subspace theorem; transcendence; continued fraction
UR - http://eudml.org/doc/10198
ER -
References
top- B. Adamczewski, Transcendance “à la Liouville” de certain nombres réels, C. R. Acad. Sci. Paris 338 (2004), 511-514 Zbl1046.11051MR2057021
- B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases Zbl1195.11094
- B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers II. Continued fractions Zbl1195.11093MR2233683
- B. Adamczewski, Y. Bugeaud, On the Maillet–Baker continued fractions
- B. Adamczewski, Y. Bugeaud, F. Luca, Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris 339 (2004), 11-14 Zbl1119.11019MR2075225
- J.-P. Allouche, Nouveaux résultats de transcendance de réels à développements non aléatoire, Gaz. Math. 84 (2000), 19-34 MR1766087
- J.-P. Allouche, J. L. Davison, M. Queffélec, L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66 Zbl0998.11036MR1869317
- J.-P. Allouche, J. O. Shallit, Generalized Pertured Symmetry, European J. Combin. 19 (1998), 401-411 Zbl0918.11015MR1630532
- J.-P. Allouche, J. O. Shallit, Automatic Sequences: Theory, Applications, Generalizations, (2003), Cambridge University Press, Cambridge Zbl1086.11015MR1997038
- A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962), 1-8 Zbl0105.03903MR144853
- A. Baker, On Mahler’s classification of transcendental numbers, Acta Math. 111 (1964), 97-120 Zbl0147.03403MR157943
- L. E. Baum, M. M. Sweet, Continued fractions of algebraic power series in characteristic , Ann. of Math. 103 (1976), 593-610 Zbl0312.10024MR409372
- C. Baxa, Extremal values of continuants and transcendence of certain continued fractions, Adv. in Appl. Math. 32 (2004), 754-790 Zbl1063.11019MR2053844
- A. Blanchard, M. Mendès France, Symétrie et transcendance, Bull. Sci. Math. 106 (1982), 325-335 Zbl0492.10027MR680277
- H. Davenport, K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160-167 Zbl0066.29302MR77577
- J. L. Davison, A class of transcendental numbers with bounded partial quotients, Theory and Applications, R. A. Mollin, ed. (1989), 365-371 Zbl0693.10028MR1123082
- J. L. Davison, Continued fractions with bounded partial quotients, Proc. Edinb. Math. Soc. 45 (2002), 653-671 Zbl1107.11303MR1933746
- F. M. Dekking, M. Mendès France, A. J. van der Poorten, Folds!, Math. Intelligencer 4 (1982), 130-138, 173-181, 190-195 Zbl0493.10003MR684028
- J.-H. Evertse, The number of algebraic numbers of given degree approximating a given algebraic number, London Math. Soc. Lecture Note Ser. 247 In Analytic number theory (Kyoto, 1996) (1997), 53-83 Zbl0919.11048MR1694985
- N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, (2002), Springer-Verlag Zbl1014.11015MR1970385
- J. Hartmanis, R. E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math. Soc. 117 (1965), 285-306 Zbl0131.15404MR170805
- A. Ya. Khintchine, Continued fractions, 2nd edition (1949), Moscow-Leningrad Zbl0117.28503
- S. Lang, Introduction to Diophantine Approximations, (1995), Springer-Verlag Zbl0826.11030MR1348400
- W. J. LeVeque, Topics in number theory, Vol. II (1956), Addison-Wesley Zbl0070.03803MR80682
- P. Liardet, P. Stambul, Séries de Engel et fractions continuées, J. Théor. Nombres Bordeaux 12 (2000), 37-68 Zbl1007.11045MR1827837
- J. Liouville, Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques, C. R. Acad. Sci. Paris 18 (1844), 883-885, 910-911
- J. H. Loxton, A. J. van der Poorten, Arithmetic properties of certain functions in several variables III, Bull. Austral. Math. Soc. 16 (1977), 15-47 Zbl0339.10028MR452125
- E. Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, (1906), Gauthier-Villars, Paris Zbl37.0237.02
- M. Mendès France, Principe de la symétrie perturbée, Séminaire de Théorie des Nombres, Paris 1979-80, M.-J. Bertin (éd.), Birkhäuser, Boston (1981), 77-98 Zbl0451.10019MR633890
- O. Perron, Die Lehre von den Kettenbrüchen, (1929), Teubner, Leipzig Zbl55.0262.09
- A. J. van der Poorten, J. O. Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250 Zbl0753.11005MR1149740
- M. Queffélec, Transcendance des fractions continues de Thue–Morse, J. Number Theory 73 (1998), 201-211 Zbl0920.11045MR1658023
- M. Queffélec, Irrational number with automaton-generated continued fraction expansion, World Scientific, Dynamical Systems: From Crystal to Chaos (2000), 190-198 Zbl1196.11015MR1796159
- D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125-131 Zbl0079.27401MR93508
- W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855-859 Zbl0091.05706MR116184
- W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 27-50 Zbl0173.04801MR223309
- W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551 Zbl0226.10024MR314761
- W. M. Schmidt, Diophantine approximation, (1980), Springer, Berlin Zbl0421.10019MR568710
- J. O. Shallit, Real numbers with bounded partial quotients: a survey, Enseign. Math. 38 (1992), 151-187 Zbl0753.11006MR1175525
- H. S. Shapiro, Extremal problems for polynomials and power series, (1952)
- M. Waldschmidt, Un demi-siècle de transcendance, Development of mathematics 1950–2000 (2000), 1121-1186 Zbl0977.11030MR1796871
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.