Automatic continued fractions are transcendental or quadratic

Yann Bugeaud

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 6, page 1005-1022
  • ISSN: 0012-9593

Abstract

top
We establish new combinatorial transcendence criteria for continued fraction expansions. Let  α = [ 0 ; a 1 , a 2 , ... ] be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients ( a ) 1 of  α is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.

How to cite

top

Bugeaud, Yann. "Automatic continued fractions are transcendental or quadratic." Annales scientifiques de l'École Normale Supérieure 46.6 (2013): 1005-1022. <http://eudml.org/doc/272120>.

@article{Bugeaud2013,
abstract = {We establish new combinatorial transcendence criteria for continued fraction expansions. Let $\alpha = [0; a_1, a_2, \ldots ]$ be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients $(a_\{\ell \})_\{\ell \ge 1\}$ of $\alpha $ is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.},
author = {Bugeaud, Yann},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {continued fractions; transcendence},
language = {eng},
number = {6},
pages = {1005-1022},
publisher = {Société mathématique de France},
title = {Automatic continued fractions are transcendental or quadratic},
url = {http://eudml.org/doc/272120},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Bugeaud, Yann
TI - Automatic continued fractions are transcendental or quadratic
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 6
SP - 1005
EP - 1022
AB - We establish new combinatorial transcendence criteria for continued fraction expansions. Let $\alpha = [0; a_1, a_2, \ldots ]$ be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients $(a_{\ell })_{\ell \ge 1}$ of $\alpha $ is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.
LA - eng
KW - continued fractions; transcendence
UR - http://eudml.org/doc/272120
ER -

References

top
  1. [1] B. Adamczewski & Y. Bugeaud, On the complexity of algebraic numbers. II. Continued fractions, Acta Math. 195 (2005), 1–20. Zbl1195.11093MR2233683
  2. [2] B. Adamczewski & Y. Bugeaud, Real and p -adic expansions involving symmetric patterns, Int. Math. Res. Not. 2006 (2006), Art. ID 75968, 17. Zbl1113.11041MR2250005
  3. [3] B. Adamczewski & Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. 165 (2007), 547–565. Zbl1195.11094MR2299740
  4. [4] B. Adamczewski & Y. Bugeaud, On the Maillet-Baker continued fractions, J. reine angew. Math. 606 (2007), 105–121. Zbl1145.11054MR2337643
  5. [5] B. Adamczewski & Y. Bugeaud, Palindromic continued fractions, Ann. Inst. Fourier (Grenoble) 57 (2007), 1557–1574. Zbl1126.11036MR2364142
  6. [6] B. Adamczewski & Y. Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue-Siegel-Roth-Schmidt, Proc. Lond. Math. Soc.101 (2010), 1–26. Zbl1200.11054MR2661240
  7. [7] B. Adamczewski & Y. Bugeaud, Transcendence measures for continued fractions involving repetitive or symmetric patterns, J. Eur. Math. Soc. (JEMS) 12 (2010), 883–914. Zbl1200.11053MR2654083
  8. [8] B. Adamczewski & Y. Bugeaud, Nombres réels de complexité sous-linéaire : mesures d’irrationalité et de transcendance, J. reine angew. Math. 658 (2011), 65–98. MR2831513
  9. [9] B. Adamczewski, Y. Bugeaud & L. Davison, Continued fractions and transcendental numbers, Ann. Inst. Fourier (Grenoble) 56 (2006), 2093–2113. Zbl1152.11034MR2290775
  10. [10] B. Adamczewski, Y. Bugeaud & F. Luca, Sur la complexité des nombres algébriques, C. R. Math. Acad. Sci. Paris339 (2004), 11–14. MR2075225
  11. [11] B. Adamczewski & N. Rampersad, On patterns occurring in binary algebraic numbers, Proc. Amer. Math. Soc.136 (2008), 3105–3109. Zbl1151.11036MR2407073
  12. [12] J.-P. Allouche, J. L. Davison, M. Queffélec & L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory91 (2001), 39–66. Zbl0998.11036MR1869317
  13. [13] J.-P. Allouche & J. Shallit, Automatic sequences. Theory, applications, generalizations, Cambridge Univ. Press, 2003. Zbl1086.11015MR1997038
  14. [14] A. Baker, Continued fractions of transcendental numbers, Mathematika9 (1962), 1–8. Zbl0105.03903MR144853
  15. [15] Y. Bugeaud, An explicit lower bound for the block complexity of an algebraic number, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 229–235. Zbl1268.11099MR2439519
  16. [16] Y. Bugeaud, Quantitative versions of the subspace theorem and applications, J. Théor. Nombres Bordeaux23 (2011), 35–57. Zbl1272.11089MR2780618
  17. [17] Y. Bugeaud, Continued fractions with low complexity: transcendence measures and quadratic approximation, Compos. Math.148 (2012), 718–750. Zbl1328.11078MR2925396
  18. [18] Y. Bugeaud & J.-H. Evertse, On two notions of complexity of algebraic numbers, Acta Arith.133 (2008), 221–250. Zbl1236.11062MR2434602
  19. [19] A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, in Ninth Annual Symposium on Switching and Automata Theory, Schenectady, New York, 1968, 51–60. 
  20. [20] A. Cobham, Uniform tag sequences, Math. Systems Theory6 (1972), 164–192. Zbl0253.02029MR457011
  21. [21] S. Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam. Systems16 (1996), 663–682. Zbl0858.68051MR1406427
  22. [22] G. H. Hardy & E. M. Wright, An introduction to the theory of numbers, fifth éd., The Clarendon Press Oxford Univ. Press, 1979. Zbl0423.10001MR568909
  23. [23] E. Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Gauthier-Villars, 1906. Zbl37.0237.02
  24. [24] M. Morse & G. A. Hedlund, Symbolic Dynamics, Amer. J. Math.60 (1938), 815–866. Zbl0019.33502MR1507944
  25. [25] M. Morse & G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1–42. Zbl0022.34003MR745
  26. [26] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, 1929. Zbl55.0262.09
  27. [27] M. Queffélec, Transcendance des fractions continues de Thue-Morse, J. Number Theory73 (1998), 201–211. MR1658023
  28. [28] W. M. Schmidt, Norm form equations, Ann. of Math.96 (1972), 526–551. MR314761
  29. [29] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math. 785, Springer, 1980. Zbl0421.10019MR568710

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.