Automatic continued fractions are transcendental or quadratic
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 6, page 1005-1022
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topBugeaud, Yann. "Automatic continued fractions are transcendental or quadratic." Annales scientifiques de l'École Normale Supérieure 46.6 (2013): 1005-1022. <http://eudml.org/doc/272120>.
@article{Bugeaud2013,
abstract = {We establish new combinatorial transcendence criteria for continued fraction expansions. Let $\alpha = [0; a_1, a_2, \ldots ]$ be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients $(a_\{\ell \})_\{\ell \ge 1\}$ of $\alpha $ is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.},
author = {Bugeaud, Yann},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {continued fractions; transcendence},
language = {eng},
number = {6},
pages = {1005-1022},
publisher = {Société mathématique de France},
title = {Automatic continued fractions are transcendental or quadratic},
url = {http://eudml.org/doc/272120},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Bugeaud, Yann
TI - Automatic continued fractions are transcendental or quadratic
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 6
SP - 1005
EP - 1022
AB - We establish new combinatorial transcendence criteria for continued fraction expansions. Let $\alpha = [0; a_1, a_2, \ldots ]$ be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients $(a_{\ell })_{\ell \ge 1}$ of $\alpha $ is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.
LA - eng
KW - continued fractions; transcendence
UR - http://eudml.org/doc/272120
ER -
References
top- [1] B. Adamczewski & Y. Bugeaud, On the complexity of algebraic numbers. II. Continued fractions, Acta Math. 195 (2005), 1–20. Zbl1195.11093MR2233683
- [2] B. Adamczewski & Y. Bugeaud, Real and -adic expansions involving symmetric patterns, Int. Math. Res. Not. 2006 (2006), Art. ID 75968, 17. Zbl1113.11041MR2250005
- [3] B. Adamczewski & Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. 165 (2007), 547–565. Zbl1195.11094MR2299740
- [4] B. Adamczewski & Y. Bugeaud, On the Maillet-Baker continued fractions, J. reine angew. Math. 606 (2007), 105–121. Zbl1145.11054MR2337643
- [5] B. Adamczewski & Y. Bugeaud, Palindromic continued fractions, Ann. Inst. Fourier (Grenoble) 57 (2007), 1557–1574. Zbl1126.11036MR2364142
- [6] B. Adamczewski & Y. Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue-Siegel-Roth-Schmidt, Proc. Lond. Math. Soc.101 (2010), 1–26. Zbl1200.11054MR2661240
- [7] B. Adamczewski & Y. Bugeaud, Transcendence measures for continued fractions involving repetitive or symmetric patterns, J. Eur. Math. Soc. (JEMS) 12 (2010), 883–914. Zbl1200.11053MR2654083
- [8] B. Adamczewski & Y. Bugeaud, Nombres réels de complexité sous-linéaire : mesures d’irrationalité et de transcendance, J. reine angew. Math. 658 (2011), 65–98. MR2831513
- [9] B. Adamczewski, Y. Bugeaud & L. Davison, Continued fractions and transcendental numbers, Ann. Inst. Fourier (Grenoble) 56 (2006), 2093–2113. Zbl1152.11034MR2290775
- [10] B. Adamczewski, Y. Bugeaud & F. Luca, Sur la complexité des nombres algébriques, C. R. Math. Acad. Sci. Paris339 (2004), 11–14. MR2075225
- [11] B. Adamczewski & N. Rampersad, On patterns occurring in binary algebraic numbers, Proc. Amer. Math. Soc.136 (2008), 3105–3109. Zbl1151.11036MR2407073
- [12] J.-P. Allouche, J. L. Davison, M. Queffélec & L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory91 (2001), 39–66. Zbl0998.11036MR1869317
- [13] J.-P. Allouche & J. Shallit, Automatic sequences. Theory, applications, generalizations, Cambridge Univ. Press, 2003. Zbl1086.11015MR1997038
- [14] A. Baker, Continued fractions of transcendental numbers, Mathematika9 (1962), 1–8. Zbl0105.03903MR144853
- [15] Y. Bugeaud, An explicit lower bound for the block complexity of an algebraic number, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 229–235. Zbl1268.11099MR2439519
- [16] Y. Bugeaud, Quantitative versions of the subspace theorem and applications, J. Théor. Nombres Bordeaux23 (2011), 35–57. Zbl1272.11089MR2780618
- [17] Y. Bugeaud, Continued fractions with low complexity: transcendence measures and quadratic approximation, Compos. Math.148 (2012), 718–750. Zbl1328.11078MR2925396
- [18] Y. Bugeaud & J.-H. Evertse, On two notions of complexity of algebraic numbers, Acta Arith.133 (2008), 221–250. Zbl1236.11062MR2434602
- [19] A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, in Ninth Annual Symposium on Switching and Automata Theory, Schenectady, New York, 1968, 51–60.
- [20] A. Cobham, Uniform tag sequences, Math. Systems Theory6 (1972), 164–192. Zbl0253.02029MR457011
- [21] S. Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam. Systems16 (1996), 663–682. Zbl0858.68051MR1406427
- [22] G. H. Hardy & E. M. Wright, An introduction to the theory of numbers, fifth éd., The Clarendon Press Oxford Univ. Press, 1979. Zbl0423.10001MR568909
- [23] E. Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Gauthier-Villars, 1906. Zbl37.0237.02
- [24] M. Morse & G. A. Hedlund, Symbolic Dynamics, Amer. J. Math.60 (1938), 815–866. Zbl0019.33502MR1507944
- [25] M. Morse & G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1–42. Zbl0022.34003MR745
- [26] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, 1929. Zbl55.0262.09
- [27] M. Queffélec, Transcendance des fractions continues de Thue-Morse, J. Number Theory73 (1998), 201–211. MR1658023
- [28] W. M. Schmidt, Norm form equations, Ann. of Math.96 (1972), 526–551. MR314761
- [29] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math. 785, Springer, 1980. Zbl0421.10019MR568710
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.