Lelong numbers on projective varieties
- [1] Department of Mathematics, University of Michigan. 530 Church Street, Ann Arbor, MI 48109-1043 USA
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 4, page 781-800
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topParra, Rodrigo. "Lelong numbers on projective varieties." Annales de la faculté des sciences de Toulouse Mathématiques 20.4 (2011): 781-800. <http://eudml.org/doc/219710>.
@article{Parra2011,
abstract = {Given a positive closed (1,1)-current $T$ defined on the regular locus of a projective variety $X$ with bounded mass near the singular part of $X$ and $Y$ an irreducible algebraic subset of $X$, we present uniform estimates for the locus inside $Y$ where the Lelong numbers of $T$ are larger than the generic Lelong number of $T$ along $Y$.},
affiliation = {Department of Mathematics, University of Michigan. 530 Church Street, Ann Arbor, MI 48109-1043 USA},
author = {Parra, Rodrigo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Lelong numbers; positive closed currents; algebraic sets; projective variety},
language = {eng},
month = {7},
number = {4},
pages = {781-800},
publisher = {Université Paul Sabatier, Toulouse},
title = {Lelong numbers on projective varieties},
url = {http://eudml.org/doc/219710},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Parra, Rodrigo
TI - Lelong numbers on projective varieties
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 4
SP - 781
EP - 800
AB - Given a positive closed (1,1)-current $T$ defined on the regular locus of a projective variety $X$ with bounded mass near the singular part of $X$ and $Y$ an irreducible algebraic subset of $X$, we present uniform estimates for the locus inside $Y$ where the Lelong numbers of $T$ are larger than the generic Lelong number of $T$ along $Y$.
LA - eng
KW - Lelong numbers; positive closed currents; algebraic sets; projective variety
UR - http://eudml.org/doc/219710
ER -
References
top- Boucksom (S.).— Cônes positifs des variétés complexes compactes, Thèse de Doctorat, Grenoble (2002).
- Demailly (J.-P.).— Regularization of closed positive currents and intersection theory. J. Algebraic Geom., 1(3), p. 361-409 (1992). Zbl0777.32016MR1158622
- Demailly (J.-P.).— A numerical criterion for very ample line bundles. J. Differential Geom., 37(2), p. 323-374 (1993). Zbl0783.32013MR1205448
- Demailly (J.-P.).— Complex analytic and algebraic geometry. http://www-fourier.ujf-grenoble.fr/ demailly/books.html (2009).
- Demailly (J.-P.).— Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines Mém. Soc. Math. France (N.S.), 19, p. 1-125 (1985). Zbl0579.32012
- Dinh (T-C) and Sibony (N.).— Equidistribution towards the Green current for holomorphic maps, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 2, p. 307-336. (2468484 (2009i:32041) Zbl1160.32029MR2468484
- Lazarsfeld (R.).— Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. Zbl1093.14500MR2095471
- Meo (M.).— Inégalités d’auto-intersection pour les courants positifs fermés définis dans les variétés projectives. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26, p. 161-184 (1998). Zbl0914.32013MR1632996
- Yum Tong Siu.— Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math., 27, p. 53-156 (1974). Zbl0289.32003MR352516
- Varolin (D.).— Three variations on a theme in complex analytic geometry (lecture notes). http://www.math.sunysb.edu/ dror/. Zbl1222.32001MR2743817
- Vigny (G.).— Lelong-Skoda transform for compact Kähler manifolds and self-intersection inequalities. J. Geom. Anal., 19, p. 433-451 (2009). Zbl1173.32014MR2481969
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.