Lelong numbers on projective varieties

Rodrigo Parra[1]

  • [1] Department of Mathematics, University of Michigan. 530 Church Street, Ann Arbor, MI 48109-1043 USA

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 4, page 781-800
  • ISSN: 0240-2963

Abstract

top
Given a positive closed (1,1)-current T defined on the regular locus of a projective variety X with bounded mass near the singular part of X and Y an irreducible algebraic subset of X , we present uniform estimates for the locus inside Y where the Lelong numbers of T are larger than the generic Lelong number of T along Y .

How to cite

top

Parra, Rodrigo. "Lelong numbers on projective varieties." Annales de la faculté des sciences de Toulouse Mathématiques 20.4 (2011): 781-800. <http://eudml.org/doc/219710>.

@article{Parra2011,
abstract = {Given a positive closed (1,1)-current $T$ defined on the regular locus of a projective variety $X$ with bounded mass near the singular part of $X$ and $Y$ an irreducible algebraic subset of $X$, we present uniform estimates for the locus inside $Y$ where the Lelong numbers of $T$ are larger than the generic Lelong number of $T$ along $Y$.},
affiliation = {Department of Mathematics, University of Michigan. 530 Church Street, Ann Arbor, MI 48109-1043 USA},
author = {Parra, Rodrigo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Lelong numbers; positive closed currents; algebraic sets; projective variety},
language = {eng},
month = {7},
number = {4},
pages = {781-800},
publisher = {Université Paul Sabatier, Toulouse},
title = {Lelong numbers on projective varieties},
url = {http://eudml.org/doc/219710},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Parra, Rodrigo
TI - Lelong numbers on projective varieties
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 4
SP - 781
EP - 800
AB - Given a positive closed (1,1)-current $T$ defined on the regular locus of a projective variety $X$ with bounded mass near the singular part of $X$ and $Y$ an irreducible algebraic subset of $X$, we present uniform estimates for the locus inside $Y$ where the Lelong numbers of $T$ are larger than the generic Lelong number of $T$ along $Y$.
LA - eng
KW - Lelong numbers; positive closed currents; algebraic sets; projective variety
UR - http://eudml.org/doc/219710
ER -

References

top
  1. Boucksom (S.).— Cônes positifs des variétés complexes compactes, Thèse de Doctorat, Grenoble (2002). 
  2. Demailly (J.-P.).— Regularization of closed positive currents and intersection theory. J. Algebraic Geom., 1(3), p. 361-409 (1992). Zbl0777.32016MR1158622
  3. Demailly (J.-P.).— A numerical criterion for very ample line bundles. J. Differential Geom., 37(2), p. 323-374 (1993). Zbl0783.32013MR1205448
  4. Demailly (J.-P.).— Complex analytic and algebraic geometry. http://www-fourier.ujf-grenoble.fr/ demailly/books.html (2009). 
  5. Demailly (J.-P.).— Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines Mém. Soc. Math. France (N.S.), 19, p. 1-125 (1985). Zbl0579.32012
  6. Dinh (T-C) and Sibony (N.).— Equidistribution towards the Green current for holomorphic maps, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 2, p. 307-336. (2468484 (2009i:32041) Zbl1160.32029MR2468484
  7. Lazarsfeld (R.).— Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. Zbl1093.14500MR2095471
  8. Meo (M.).— Inégalités d’auto-intersection pour les courants positifs fermés définis dans les variétés projectives. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26, p. 161-184 (1998). Zbl0914.32013MR1632996
  9. Yum Tong Siu.— Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math., 27, p. 53-156 (1974). Zbl0289.32003MR352516
  10. Varolin (D.).— Three variations on a theme in complex analytic geometry (lecture notes). http://www.math.sunysb.edu/ dror/. Zbl1222.32001MR2743817
  11. Vigny (G.).— Lelong-Skoda transform for compact Kähler manifolds and self-intersection inequalities. J. Geom. Anal., 19, p. 433-451 (2009). Zbl1173.32014MR2481969

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.