Equidistribution towards the Green current for holomorphic maps
Tien-Cuong Dinh; Nessim Sibony
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 2, page 307-336
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topDinh, Tien-Cuong, and Sibony, Nessim. "Equidistribution towards the Green current for holomorphic maps." Annales scientifiques de l'École Normale Supérieure 41.2 (2008): 307-336. <http://eudml.org/doc/272150>.
@article{Dinh2008,
abstract = {Let $f$ be a non-invertible holomorphic endomorphism of a projective space and $f^n$ its iterate of order $n$. We prove that the pull-back by $f^n$ of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to $f$ when $n$ tends to infinity. We also give an analogous result for the pull-back of positive closed $(1,1)$-currents and a similar result for regular polynomial automorphisms of $\mathbb \{C\}^k$.},
author = {Dinh, Tien-Cuong, Sibony, Nessim},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Green current; exceptional set; plurisubharmonic function; Lelong number; regular automorphism},
language = {eng},
number = {2},
pages = {307-336},
publisher = {Société mathématique de France},
title = {Equidistribution towards the Green current for holomorphic maps},
url = {http://eudml.org/doc/272150},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Dinh, Tien-Cuong
AU - Sibony, Nessim
TI - Equidistribution towards the Green current for holomorphic maps
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 2
SP - 307
EP - 336
AB - Let $f$ be a non-invertible holomorphic endomorphism of a projective space and $f^n$ its iterate of order $n$. We prove that the pull-back by $f^n$ of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to $f$ when $n$ tends to infinity. We also give an analogous result for the pull-back of positive closed $(1,1)$-currents and a similar result for regular polynomial automorphisms of $\mathbb {C}^k$.
LA - eng
KW - Green current; exceptional set; plurisubharmonic function; Lelong number; regular automorphism
UR - http://eudml.org/doc/272150
ER -
References
top- [1] J.-Y. Briend & J. Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de , Publ. Math. Inst. Hautes Études Sci.93 (2001), 145–159. Zbl1010.37004
- [2] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat.6 (1965), 103–144. Zbl0127.03401MR194595
- [3] D. Cerveau & A. Lins Neto, Hypersurfaces exceptionnelles des endomorphismes de , Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), 155–161. Zbl0967.32022
- [4] S. S. Chern, H. I. Levine & L. Nirenberg, Intrinsic norms on a complex manifold, in Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, 1969, 119–139. Zbl0202.11603
- [5] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in Complex analysis and geometry, Univ. Ser. Math., Plenum, 1993, 115–193. Zbl0792.32006MR1211880
- [6] J.-P. Demailly, Complex analytic geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2007.
- [7] T.-C. Dinh, Distribution des préimages et des points périodiques d’une correspondance polynomiale, Bull. Soc. Math. France133 (2005), 363–394. Zbl1090.37032MR2169823
- [8] T.-C. Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal.15 (2005), 207–227. Zbl1085.37039MR2152480
- [9] T.-C. Dinh & N. Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl.82 (2003), 367–423. Zbl1033.37023
- [10] T.-C. Dinh & N. Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv.81 (2006), 221–258. Zbl1094.32005
- [11] T.-C. Dinh & N. Sibony, Pull-back of currents by holomorphic maps, Manuscripta Math.123 (2007), 357–371. Zbl1128.32020
- [12] T.-C. Dinh & N. Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, preprint arXiv:math/0703702, 2007, to appear in Acta Math. Zbl1227.32024
- [13] C. Favre & M. Jonsson, Brolin’s theorem for curves in two complex dimensions, Ann. Inst. Fourier (Grenoble) 53 (2003), 1461–1501. Zbl1113.32005
- [14] C. Favre & M. Jonsson, Eigenvaluations, Ann. Sci. École Norm. Sup.40 (2007), 309–349. Zbl1135.37018
- [15] J. E. Fornæss & R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann.248 (1980), 47–72. Zbl0411.32011
- [16] J. E. Fornæss & N. Sibony, Complex Hénon mappings in and Fatou-Bieberbach domains, Duke Math. J.65 (1992), 345–380. Zbl0761.32015
- [17] J. E. Fornæss & N. Sibony, Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro, 1992), Astérisque 222 (1994), 5, 201–231. Zbl0813.58030
- [18] J. E. Fornæss & N. Sibony, Complex dynamics in higher dimension. II, in Modern methods in complex analysis (Princeton, NJ, 1992), Ann. of Math. Stud. 137, Princeton Univ. Press, 1995, 135–182. Zbl0847.58059
- [19] A. Freire, A. Lopes & R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat.14 (1983), 45–62. Zbl0568.58027
- [20] V. Guedj, Equidistribution towards the Green current, Bull. Soc. Math. France131 (2003), 359–372. Zbl1070.37026MR2017143
- [21] V. Guedj, Decay of volumes under iteration of meromorphic mappings, Ann. Inst. Fourier (Grenoble) 54 (2004), 2369–2386. Zbl1069.32007MR2139697
- [22] L. Hörmander, The analysis of linear partial differential operators. I, Grund. Math. Wiss. 256, Springer, 1983. Zbl0521.35001MR705278
- [23] P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Dunod, 1968. Zbl0195.11603
- [24] M. J. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems3 (1983), 351–385. Zbl0537.58035MR741393
- [25] M. Meo, Image inverse d’un courant positif fermé par une application analytique surjective, C. R. Acad. Sci. Paris Sér. I Math.322 (1996), 1141–1144. Zbl0858.32012MR1396655
- [26] M. Meo, Inégalités d’auto-intersection pour les courants positifs fermés définis dans les variétés projectives, Ann. Scuola Norm. Sup. Pisa Cl. Sci.26 (1998), 161–184. Zbl0914.32013MR1632996
- [27] A. Russakovskii & B. Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J.46 (1997), 897–932. Zbl0901.58023
- [28] B. Shiffman, M. Shishikura & T. Ueda, On totally invariant varieties of holomorphic mappings of , preprint, 2000.
- [29] N. Sibony, Dynamique des applications rationnelles de , in Dynamique et géométrie complexes (Lyon, 1997), Panor. Synthèses 8, Soc. Math. France, 1999, 97–185. Zbl1020.37026MR1760844
- [30] Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math.27 (1974), 53–156. Zbl0289.32003MR352516
- [31] J.-C. Tougeron, Idéaux de fonctions différentiables, 71, Springer, 1972. Zbl0251.58001
- [32] T. Ueda, Fatou sets in complex dynamics on projective spaces, J. Math. Soc. Japan46 (1994), 545–555. Zbl0829.58025MR1276837
- [33] G. Vigny, Lelong-Skoda transform for compact Kähler manifolds and self-intersection inequalities, preprint arXiv:0711.3782v1, 2007. Zbl1173.32014MR2481969
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.