Page 1

Displaying 1 – 5 of 5

Showing per page

Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor

Henri Guenancia (2014)

Annales de l’institut Fourier

Let X be a compact Kähler manifold and Δ be a -divisor with simple normal crossing support and coefficients between 1 / 2 and 1 . Assuming that K X + Δ is ample, we prove the existence and uniqueness of a negatively curved Kahler-Einstein metric on X Supp ( Δ ) having mixed Poincaré and cone singularities according to the coefficients of Δ . As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair ( X , Δ ) .

Lelong numbers on projective varieties

Rodrigo Parra (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Given a positive closed (1,1)-current T defined on the regular locus of a projective variety X with bounded mass near the singular part of X and Y an irreducible algebraic subset of X , we present uniform estimates for the locus inside Y where the Lelong numbers of T are larger than the generic Lelong number of T along Y .

Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields

Frédéric Campana, Henri Guenancia, Mihai Păun (2013)

Annales scientifiques de l'École Normale Supérieure

We prove the existence of non-positively curved Kähler-Einstein metrics with cone singularities along a given simple normal crossing divisor of a compact Kähler manifold, under a technical condition on the cone angles, and we also discuss the case of positively-curved Kähler-Einstein metrics with cone singularities. As an application we extend to this setting classical results of Lichnerowicz and Kobayashi on the parallelism and vanishing of appropriate holomorphic tensor fields.

Currently displaying 1 – 5 of 5

Page 1