On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold
- [1] Laboratoire de Mathématiques d’Orsay, UMR 8628 CNRS, Université Paris-Sud, Orsay Cedex, F-91405
Journées Équations aux dérivées partielles (2011)
- Volume: 260, Issue: 5, page 1-17
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topLaurent, Camille. "On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold." Journées Équations aux dérivées partielles 260.5 (2011): 1-17. <http://eudml.org/doc/219800>.
@article{Laurent2011,
abstract = {We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on $\mathbb\{R\}^3$, is performed by taking care of possible geometric effects. It uses some results of S. Ibrahim [16] on the behavior of concentrating waves on manifolds.},
affiliation = {Laboratoire de Mathématiques d’Orsay, UMR 8628 CNRS, Université Paris-Sud, Orsay Cedex, F-91405},
author = {Laurent, Camille},
journal = {Journées Équations aux dérivées partielles},
keywords = {concentration-compacyness; internal stabilization and control; exponential decay; profile decomposition; microlocal arguments},
language = {eng},
month = {6},
number = {5},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold},
url = {http://eudml.org/doc/219800},
volume = {260},
year = {2011},
}
TY - JOUR
AU - Laurent, Camille
TI - On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
VL - 260
IS - 5
SP - 1
EP - 17
AB - We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on $\mathbb{R}^3$, is performed by taking care of possible geometric effects. It uses some results of S. Ibrahim [16] on the behavior of concentrating waves on manifolds.
LA - eng
KW - concentration-compacyness; internal stabilization and control; exponential decay; profile decomposition; microlocal arguments
UR - http://eudml.org/doc/219800
ER -
References
top- L. Aloui, S. Ibrahim, and K. Nakanishi. Exponential energy decay for damped Klein-Gordon Equation with nonlinearities of arbitrary growth. Comm. Partial Diff. Equa., 36(5):797–818, 2011. Zbl1243.35122MR2769109
- H. Bahouri and P. Gérard. High frequency approximation of critical nonlinear wave equations. American J. Math., 121:131–175, 1999. Zbl0919.35089MR1705001
- C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim., 305:1024–1065, 1992. Zbl0786.93009MR1178650
- N. Burq. Mesures semi-classiques et mesures de defaut, Seminaire Bourbaki, Vol. 1996/97. Astérisque, 245:167–195, 1997. Zbl0954.35102MR1627111
- N. Burq and P. Gérard. Condition nécéssaire et suffisante pour la contrôlabilite exacte des ondes. Comptes rendus de l’Académie des sciences. Série 1, Mathématique, 325(7):749–752, 1997. Zbl0906.93008MR1483711
- M. Christ, J. Colliander, and T. Tao. Ill-posedness for nonlinear Schrödinger and wave equations. http://arxiv.org/ps/math.AP/0311048.pdf. Zbl1048.35101
- H. Christianson. Semiclassical non-concentration near hyperbolic orbits. Journal of Functional Analysis, 246(2):145–195, 2007. Zbl1119.58018MR2321040
- M. Daoulatli, I. Lasiecka, and D. Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete Contin. Dyn. Syst. Ser, 2:67–94, 2009. Zbl1172.35443MR2481581
- B. Dehman and P. Gérard. Stabilization for the Nonlinear Klein Gordon Equation with critical Exponent. Prépublication de l’Université Paris-Sud, available at http://www.math.u-psud.fr/~biblio/saisie/fichiers/ppo_2002_35.ps, 2002.
- B. Dehman and G. Lebeau. Analysis of the HUM Control Operator and Exact Controllability for Semilinear Waves in Uniform Time. SIAM Journal on Control and Optimization, 48(2):521–550, 2009. Zbl1194.35268MR2486082
- B. Dehman, G. Lebeau, and E. Zuazua. Stabilization and control for the subcritical semilinear wave equation. Annales scientifiques de l’Ecole normale supérieure, 36(4):525–551, 2003. Zbl1036.35033MR2013925
- E. Fernández-Cara and E. Zuazua. Null and approximate controllability for weakly blowing up semilinear heat equations. Annales de l’Institut Henri Poincare/Analyse non lineaire, 17(5):583–616, 2000. Zbl0970.93023MR1791879
- I. Gallagher and P. Gérard. Profile decomposition for the wave equation outside a convex obstacle. Journal de mathématiques pures et appliquées, 80(1):1–49, 2001. Zbl0980.35088MR1810508
- P. Gérard. Microlocal Defect Measures. Comm. Partial Diff. eq., 16:1762–1794, 1991. Zbl0770.35001MR1135919
- P. Gérard. Oscillations and Concentration Effects in Semilinear Dispersive Wave Equations. Journal of Functional Analysis, 141:60–98, 1996. Zbl0868.35075MR1414374
- S. Ibrahim. Geometric-Optics for Nonlinear Concentrating Waves in Focusing and Non-Focusing Two Geometries. Communications in Contemporary Mathematics, 6(1):1–24, 2004. Zbl1047.35104MR2048775
- S. Ibrahim and M. Majdoub. Solutions globales de l’equation des ondes semi-lineaire critique a coefficients variables. Bulletin de la Société Mathématique de France, 131(1):1–22, 2003. Zbl1024.35077MR1975803
- R. Joly and C. Laurent. Stabilisation for the semilinear wave equation with geometric control condition. in preparation, 2011.
- L.V. Kapitanski. Some generalizations of the Strichartz-Brenner inequality. Leningrad Math. J., 1(10):693–726, 1990. Zbl0732.35118MR1015129
- H. Koch and D. Tataru. Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure and Appl. Math., 58(2):217–284, 2005. Zbl1078.35143MR2094851
- C. Laurent. Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3. SIAM Journal on Mathematical Analysis, 42(2):785–832, 2010. Zbl1208.93035MR2644360
- C. Laurent. On stabilization and control for the critical Klein Gordon equation on 3-D compact manifolds. Journal of Functional Analysis, 260(5):1304–1368, 2011. Zbl1244.35012MR2749430
- G. Lebeau. Equation des ondes amorties. In Algebraic and geometric methods in mathematical physics: proceedings of the Kaciveli Summer School, Crimea, Ukraine, 1993, page 73. Springer, 1996. Zbl0863.58068MR1385677
- G. Lebeau. Non linear optic and supercritical wave equation. Bulletin-Société Royale des sciences de Liège, 70(4/6):267–306, 2001. Zbl1034.35137MR1904059
- G. Lebeau and L. Robbiano. Stabilisation de l’équation des ondes par le bord. Duke Mathematical Journal, 86(3):465–491, 1997. Zbl0884.58093MR1432305
- P.L. Lions. The Concentration-Compactness Principle in the Calculus of Variations.(The limit case, Part I.). Revista matemática iberoamericana, 1(1):145, 1985. Zbl0704.49005MR834360
- J. Rauch and M. Taylor. Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains. Indiana Univ. Math. J., 24(1):79–86, 1975. Zbl0281.35012MR361461
- L. Robbiano and C. Zuily. Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients. Invent. Math., 131:493–539, 1998. Zbl0909.35004MR1614547
- E. Schenck. Energy decay for the damped wave equation under a pressure condition. Communications in Mathematical Physics, pages 1–36, 2010. Zbl1207.35064MR2728729
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.