On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold

Camille Laurent[1]

  • [1] Laboratoire de Mathématiques d’Orsay, UMR 8628 CNRS, Université Paris-Sud, Orsay Cedex, F-91405

Journées Équations aux dérivées partielles (2011)

  • Volume: 260, Issue: 5, page 1-17
  • ISSN: 0752-0360

Abstract

top
We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on 3 , is performed by taking care of possible geometric effects. It uses some results of S. Ibrahim [16] on the behavior of concentrating waves on manifolds.

How to cite

top

Laurent, Camille. "On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold." Journées Équations aux dérivées partielles 260.5 (2011): 1-17. <http://eudml.org/doc/219800>.

@article{Laurent2011,
abstract = {We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on $\mathbb\{R\}^3$, is performed by taking care of possible geometric effects. It uses some results of S. Ibrahim [16] on the behavior of concentrating waves on manifolds.},
affiliation = {Laboratoire de Mathématiques d’Orsay, UMR 8628 CNRS, Université Paris-Sud, Orsay Cedex, F-91405},
author = {Laurent, Camille},
journal = {Journées Équations aux dérivées partielles},
keywords = {concentration-compacyness; internal stabilization and control; exponential decay; profile decomposition; microlocal arguments},
language = {eng},
month = {6},
number = {5},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold},
url = {http://eudml.org/doc/219800},
volume = {260},
year = {2011},
}

TY - JOUR
AU - Laurent, Camille
TI - On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
VL - 260
IS - 5
SP - 1
EP - 17
AB - We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on $\mathbb{R}^3$, is performed by taking care of possible geometric effects. It uses some results of S. Ibrahim [16] on the behavior of concentrating waves on manifolds.
LA - eng
KW - concentration-compacyness; internal stabilization and control; exponential decay; profile decomposition; microlocal arguments
UR - http://eudml.org/doc/219800
ER -

References

top
  1. L. Aloui, S. Ibrahim, and K. Nakanishi. Exponential energy decay for damped Klein-Gordon Equation with nonlinearities of arbitrary growth. Comm. Partial Diff. Equa., 36(5):797–818, 2011. Zbl1243.35122MR2769109
  2. H. Bahouri and P. Gérard. High frequency approximation of critical nonlinear wave equations. American J. Math., 121:131–175, 1999. Zbl0919.35089MR1705001
  3. C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim., 305:1024–1065, 1992. Zbl0786.93009MR1178650
  4. N. Burq. Mesures semi-classiques et mesures de defaut, Seminaire Bourbaki, Vol. 1996/97. Astérisque, 245:167–195, 1997. Zbl0954.35102MR1627111
  5. N. Burq and P. Gérard. Condition nécéssaire et suffisante pour la contrôlabilite exacte des ondes. Comptes rendus de l’Académie des sciences. Série 1, Mathématique, 325(7):749–752, 1997. Zbl0906.93008MR1483711
  6. M. Christ, J. Colliander, and T. Tao. Ill-posedness for nonlinear Schrödinger and wave equations. http://arxiv.org/ps/math.AP/0311048.pdf. Zbl1048.35101
  7. H. Christianson. Semiclassical non-concentration near hyperbolic orbits. Journal of Functional Analysis, 246(2):145–195, 2007. Zbl1119.58018MR2321040
  8. M. Daoulatli, I. Lasiecka, and D. Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete Contin. Dyn. Syst. Ser, 2:67–94, 2009. Zbl1172.35443MR2481581
  9. B. Dehman and P. Gérard. Stabilization for the Nonlinear Klein Gordon Equation with critical Exponent. Prépublication de l’Université Paris-Sud, available at http://www.math.u-psud.fr/~biblio/saisie/fichiers/ppo_2002_35.ps, 2002. 
  10. B. Dehman and G. Lebeau. Analysis of the HUM Control Operator and Exact Controllability for Semilinear Waves in Uniform Time. SIAM Journal on Control and Optimization, 48(2):521–550, 2009. Zbl1194.35268MR2486082
  11. B. Dehman, G. Lebeau, and E. Zuazua. Stabilization and control for the subcritical semilinear wave equation. Annales scientifiques de l’Ecole normale supérieure, 36(4):525–551, 2003. Zbl1036.35033MR2013925
  12. E. Fernández-Cara and E. Zuazua. Null and approximate controllability for weakly blowing up semilinear heat equations. Annales de l’Institut Henri Poincare/Analyse non lineaire, 17(5):583–616, 2000. Zbl0970.93023MR1791879
  13. I. Gallagher and P. Gérard. Profile decomposition for the wave equation outside a convex obstacle. Journal de mathématiques pures et appliquées, 80(1):1–49, 2001. Zbl0980.35088MR1810508
  14. P. Gérard. Microlocal Defect Measures. Comm. Partial Diff. eq., 16:1762–1794, 1991. Zbl0770.35001MR1135919
  15. P. Gérard. Oscillations and Concentration Effects in Semilinear Dispersive Wave Equations. Journal of Functional Analysis, 141:60–98, 1996. Zbl0868.35075MR1414374
  16. S. Ibrahim. Geometric-Optics for Nonlinear Concentrating Waves in Focusing and Non-Focusing Two Geometries. Communications in Contemporary Mathematics, 6(1):1–24, 2004. Zbl1047.35104MR2048775
  17. S. Ibrahim and M. Majdoub. Solutions globales de l’equation des ondes semi-lineaire critique a coefficients variables. Bulletin de la Société Mathématique de France, 131(1):1–22, 2003. Zbl1024.35077MR1975803
  18. R. Joly and C. Laurent. Stabilisation for the semilinear wave equation with geometric control condition. in preparation, 2011. 
  19. L.V. Kapitanski. Some generalizations of the Strichartz-Brenner inequality. Leningrad Math. J., 1(10):693–726, 1990. Zbl0732.35118MR1015129
  20. H. Koch and D. Tataru. Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure and Appl. Math., 58(2):217–284, 2005. Zbl1078.35143MR2094851
  21. C. Laurent. Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3. SIAM Journal on Mathematical Analysis, 42(2):785–832, 2010. Zbl1208.93035MR2644360
  22. C. Laurent. On stabilization and control for the critical Klein Gordon equation on 3-D compact manifolds. Journal of Functional Analysis, 260(5):1304–1368, 2011. Zbl1244.35012MR2749430
  23. G. Lebeau. Equation des ondes amorties. In Algebraic and geometric methods in mathematical physics: proceedings of the Kaciveli Summer School, Crimea, Ukraine, 1993, page 73. Springer, 1996. Zbl0863.58068MR1385677
  24. G. Lebeau. Non linear optic and supercritical wave equation. Bulletin-Société Royale des sciences de Liège, 70(4/6):267–306, 2001. Zbl1034.35137MR1904059
  25. G. Lebeau and L. Robbiano. Stabilisation de l’équation des ondes par le bord. Duke Mathematical Journal, 86(3):465–491, 1997. Zbl0884.58093MR1432305
  26. P.L. Lions. The Concentration-Compactness Principle in the Calculus of Variations.(The limit case, Part I.). Revista matemática iberoamericana, 1(1):145, 1985. Zbl0704.49005MR834360
  27. J. Rauch and M. Taylor. Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains. Indiana Univ. Math. J., 24(1):79–86, 1975. Zbl0281.35012MR361461
  28. L. Robbiano and C. Zuily. Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients. Invent. Math., 131:493–539, 1998. Zbl0909.35004MR1614547
  29. E. Schenck. Energy decay for the damped wave equation under a pressure condition. Communications in Mathematical Physics, pages 1–36, 2010. Zbl1207.35064MR2728729

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.