Coarea integration in metric spaces

Malý, Jan

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 149-192

Abstract

top
Let X be a metric space with a doubling measure, Y be a boundedly compact metric space and u : X Y be a Lebesgue precise mapping whose upper gradient g belongs to the Lorentz space L m , 1 , m 1 . Let E X be a set of measure zero. Then ^ m ( E u - 1 ( y ) ) = 0 for m -a.e. y Y , where m is the m -dimensional Hausdorff measure and ^ m is the m -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets of mappings between metric spaces and analysis of their Lebesgue points. Adapted versions of the Frostman lemma and of the Muckenhoupt-Wheeden inequality appear as essential tools.

How to cite

top

Malý, Jan. "Coarea integration in metric spaces." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 2003. 149-192. <http://eudml.org/doc/221662>.

@inProceedings{Malý2003,
abstract = {Let $X$ be a metric space with a doubling measure, $Y$ be a boundedly compact metric space and $u:X\rightarrow Y$ be a Lebesgue precise mapping whose upper gradient $g$ belongs to the Lorentz space $L_\{m,1\}$, $m\ge 1$. Let $E\subset X$ be a set of measure zero. Then $\widehat\{\mathcal \{H\}\}_m(E\cap u^\{-1\}(y))=0$ for $\mathcal \{H\}_m$-a.e. $y\in Y$, where $\mathcal \{H\}_m$ is the $m$-dimensional Hausdorff measure and $\widehat\{\mathcal \{H\}\}_m$ is the $m$-codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets of mappings between metric spaces and analysis of their Lebesgue points. Adapted versions of the Frostman lemma and of the Muckenhoupt-Wheeden inequality appear as essential tools.},
author = {Malý, Jan},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {coarea formula; Eilenberg inequality; Hausdorff content; Hausdorff measure; Lebesgue points; Riesz potentials; Lorentz space; upper gradient; Poincaré inequality; space of homogenous type; metric space; doubling measure},
location = {Praha},
pages = {149-192},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Coarea integration in metric spaces},
url = {http://eudml.org/doc/221662},
year = {2003},
}

TY - CLSWK
AU - Malý, Jan
TI - Coarea integration in metric spaces
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 2003
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 149
EP - 192
AB - Let $X$ be a metric space with a doubling measure, $Y$ be a boundedly compact metric space and $u:X\rightarrow Y$ be a Lebesgue precise mapping whose upper gradient $g$ belongs to the Lorentz space $L_{m,1}$, $m\ge 1$. Let $E\subset X$ be a set of measure zero. Then $\widehat{\mathcal {H}}_m(E\cap u^{-1}(y))=0$ for $\mathcal {H}_m$-a.e. $y\in Y$, where $\mathcal {H}_m$ is the $m$-dimensional Hausdorff measure and $\widehat{\mathcal {H}}_m$ is the $m$-codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets of mappings between metric spaces and analysis of their Lebesgue points. Adapted versions of the Frostman lemma and of the Muckenhoupt-Wheeden inequality appear as essential tools.
KW - coarea formula; Eilenberg inequality; Hausdorff content; Hausdorff measure; Lebesgue points; Riesz potentials; Lorentz space; upper gradient; Poincaré inequality; space of homogenous type; metric space; doubling measure
UR - http://eudml.org/doc/221662
ER -

References

top
  1. Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1995.Zbl 0834.46021. (1995) Zbl0834.46021MR1411441
  2. Aïssaoui N., Maximal operators, Lebesgue points and quasicontinuity in strongly nonlinear potential theory, Acta Math. Univ. Comenian. 71 (2002), 35–50. MR 1 943 014. Zbl1052.46019MR1943014
  3. Ambrosio L., Tilli P., Selected topics on analysis on metric spaces, Scuola Normale Superiore Pisa, 2000. MR2012736
  4. Bagby T., Ziemer W. P., Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129–148. Zbl 0295.26013, MR 49 #9129. (191) MR0344390
  5. Bennett C., Sharpley R., Interpolation of operators, Pure and Applied Mathematics 129, Academic Press, Inc., Boston, MA, 1988. Zbl 0647.46057, MR 89e:46001. (1988) Zbl0647.46057MR0928802
  6. Burkholder D. L., Gundy R. F., Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), 249–304. Zbl 0223.60021, MR 55 #13567. (1970) MR0440695
  7. Cesari L., Sulle funzioni assolutamente continue in due variabili, Ann. Scuola Norm. Sup. Pisa, II. Ser. 10 (1941), 91–101. Zbl 0025.31301, MR 3,230e. (1941) Zbl0025.31301MR0005911
  8. Cheeger J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517. Zbl 0942.58018, MR 2000g:53043. (1999) Zbl0942.58018MR1708448
  9. Coifman R. R., Weiss G., Analyse harmonique non-commutative sur certain espaces homogènes, Lecture Notes in Math. 242. Springer-Verlag, Berlin, 1971. Zbl 0224.43006, MR 58 #17690. (1971) MR0499948
  10. Eilenberg S., On ϕ measures, Ann. Soc. Pol. Math. 17 (1938), 251–252. (1938) 
  11. Federer H., Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153. Springer-Verlag, New York, 1969. Zbl 0176.00801, MR 41 #1976. (1969) Zbl0176.00801MR0257325
  12. Federer H., Ziemer W. P., The Lebesgue set of a function whose partial derivatives are p -th power summable, Indiana Univ. Math. J. 22 (1972), 139–158. Zbl 0238.28015, MR 55 #8321. (1972) MR0435361
  13. Fiorenza A., Prignet A., Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data, ESAIM: Control, Optim. and Calc. Var. 9 (2003), 317–341. Zbl1075.35012MR1966536
  14. Fleming W. H., Functions whose partial derivatives are measures, Illinois J. Math. 4 (1960), 452–478. Zbl 0151.05402, MR 24 #A202. (1960) Zbl0151.05402MR0130338
  15. Fleming W. H., Rishel R., An integral formula for the total variation, Arch. Math. 111 (1960), 218–222. Zbl 0094.26301, MR 22 #5710. (1960) MR0114892
  16. Frostman O., Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935), 1–118. Zbl 0013.06302. (1935) Zbl0013.06302
  17. Genebashvili I., Gogatishvili A., Kokilashvili V., Krbec M., Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics 92. Longman, Harlow, 1998. Zbl 0955.42001, MR 2003b:42002. (1998) Zbl0955.42001MR1791462
  18. Hajłasz P., Sobolev mappings, co-area formula and related topics, In: Proceedings on analysis and geometry. International conference in honor of the 70th birthday of Professor Yu. G. Reshetnyak, Novosibirsk, Russia, August 30–September 3, 1999 (S. K. Vodop’yanov, ed.). Izdatel’stvo Instituta Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk, 2000, pp. 227–254. Zbl 0988.28002, MR 2002h:28005. (1999) MR1847519
  19. Hajłasz P., Kinnunen J., Hölder quasicontinuity of Sobolev functions on metric spaces, Rev. Mat. Iberoamericana 14 (1998), 601–622. Zbl pre01275454, MR 2000e:46046. (1998) Zbl1155.46306MR1681586
  20. Hajłasz P., Koskela P., Sobolev met Poincaré, Memoirs Amer. Math. Soc. 688. Zbl 0954.46022, MR 2000j:46063. 
  21. Heinonen J., Lectures on analysis on metric spaces, Universitext. Springer-Verlag, New York, 2001. Zbl 0985.46008, MR 2002c:30028. Zbl0985.46008MR1800917
  22. Heinonen J., Koskela P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61. Zbl 0915.30018, MR 99j:30025. (1998) Zbl0915.30018MR1654771
  23. Heinonen J., Koskela P., Shanmugalingam N., Tyson J., Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87–139. Zbl pre01765855, MR 2002k:46090. Zbl1013.46023MR1869604
  24. Hencl S., Malý J., Mapping of bounded distortion: Hausdorff measure of zero sets, Math. Ann. 324 (2002), 451–464. MR 1 938 454. MR1938454
  25. Honzík P., Estimates of norms of operators in weighted spaces, (Czech). Diploma Thesis, Charles University, Prague, 2001. 
  26. Jerrard R. L., Soner H. M., Functions of bounded higher variation, Indiana Univ. Math. J. 51 (2002), 645–677. MR 2003e:49069. Zbl1057.49036MR1911049
  27. Kauhanen J., Koskela P., Malý J., On functions with derivatives in a Lorentz space, Manuscripta Math. 100 (1999), 87–101. Zbl 0976.26004, MR 2000j:46064. (1999) Zbl0976.26004MR1714456
  28. Kilpeläinen T., Malý J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137–161. Zbl 0820.35063, MR 95a:35050. (1994) MR1264000
  29. Kinnunen J., Latvala V., Lebesgue points for Sobolev functions on metric spaces, Rev. Mat. Iberoamericana 18 (2002), 685–700. MR 1 954 868. Zbl1037.46031MR1954868
  30. Malý J., Sufficient conditions for change of variables in integral, In: Proceedings on analysis and geometry. International conference in honor of the 70th birthday of Professor Yu. G. Reshetnyak, Novosibirsk, Russia, August 30–September 3, 1999 (S. K. Vodop’yanov, ed.). Izdatel’stvo Instituta Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk, 2000, pp. 370–386. Zbl 0988.26011, MR 2002m:26013. (1999) MR1847527
  31. Malý J., Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals, Manuscripta Math. 110 (2003), 513–525. Zbl1098.35061MR1975101
  32. Malý J., Coarea properties of Sobolev functions, In: Function Spaces, Differential Operators, Nonlinear Analysis. The Hans Triebel Anniversary Volume (D. Haroske, T. Runst, H.-J. Schmeisser, eds.). Birkhäuser, Basel, 2003, pp. 371–381. Zbl1036.46025MR1984185
  33. Malý J., Martio O., Lusin’s condition (N) and of the class W 1 , n , J. Reine Angew. Math. 458 (1995), 19–36. Zbl 0812.30007, MR 95m:26024. (1995) MR1310951
  34. Malý J.Mosco U., Remarks on measure-valued Lagrangians on homogeneous spaces, (Italian). Papers in memory of Ennio De Giorgi. Ricerche Mat. 47 suppl. (1999), 217–231. Zbl 0957.46027, MR 2002e:31005. (1999) Zbl0957.46027MR1765686
  35. Malý J., Pick L., The sharp Riesz potential estimates in metric spaces, Indiana Univ. Math. J. 51 (2002), 251–268. Zbl pre01780940, MR 2003d:46045. Zbl1038.46027MR1909289
  36. Malý J., Swanson D., Ziemer W. P., The co-area formula for Sobolev mappings, Trans. Amer. Math. Soc. 355 (2003), 477–492. Zbl pre01821246,MR 1 932 709. Zbl1034.46032MR1932709
  37. Malý J., Swanson D., Ziemer W. P., Fine behavior of functions with gradients in a Lorentz space, In preparation. 
  38. Malý J., Ziemer W..P., Fine regularity of solutions of elliptic differential equations, Mathematical Surveys and Monographs 51. Amer. Math. Soc., Providence, R.I., 1997. Zbl 0882.35001, MR 98h:35080. (1997) MR1461542
  39. Marcus M., Mizel V. J., Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems, Bull. Amer. Math. Soc. 79 (1973), 790–795. Zbl 0275.49041, MR 48 #1013. (1973) Zbl0275.49041MR0322651
  40. Mattila P., Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge, 1995. Zbl 0819.28004, MR 96h:28006. (1995) Zbl0819.28004MR1333890
  41. Maz’ya V. G., Havin V. P., Nonlinear potential theory, Uspekhi Mat. Nauk 27 (1972), 67–138. English transl. in Russian Math. Surveys, 27 (1972), 71–148. MR 53 #13610. (1972) MR0409858
  42. Mikkonen P., On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996). Zbl 0860.35041, MR 97e:35069. (1996) Zbl0860.35041MR1386213
  43. Muckenhoupt B., Wheeden R. L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. Zbl 0289.26010, MR 49 #5275. (192) MR0340523
  44. Nieminen E., Hausdorff measures, capacities and Sobolev spaces with weights, Ann. Acad. Sci. Fenn. Math. Diss. 81 (1991). Zbl 0723.46024, MR 92i:46039. (1991) Zbl0723.46024MR1108686
  45. Reshetnyak, Yu. G., On the concept of capacity in the theory of functions with generalized derivatives, (Russian). Sibirsk. Mat. Zh. 10 (1969), 1109–1138. English transl. Siberian Math. J. 10 (1969), 818–842. Zbl 0199.20701. (1969) MR0276487
  46. Van der Putten R., On the critical-values lemma and the coarea formula, (Italian). Boll. Un. Mat. Ital., VII. Ser. B 6 (1992), 561–578. Zbl 0762.46019. (1992) Zbl0762.46019MR1191953
  47. Semmes S., Finding curves on general spaces through quantitative topology, with application to Sobolev and Poincaré inequalities, Selecta Math. (N. S.) 2 (1996), 155–295. Zbl 0870.54031, MR 97j:46033. (1996) MR1414889
  48. Shanmugalingam N., Newtonian spaces: An extension of Sobolev spaces to metric spaces, Rev. Mat. Iberoamericana 16 (2000), 243–279. Zbl 0974.46038, MR 2002b:46059. MR1809341
  49. Sjödin T., A note on capacity and Hausdorff measure in homogeneous spaces, Potential Anal. 6 (1997), 87–97. Zbl 0873.31013, MR 98e:31007. (1997) Zbl0873.31013MR1436823
  50. Turesson B. O., Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes Math. 1736. Springer-Verlag, Berlin, 2000. Zbl 0949.31006, MR 2002f:31027. Zbl0949.31006MR1774162
  51. Vodop’yanov S. K., L p -theory of potential for generalized kernels and its applications, (Russian). Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat. Novosibirsk, 1990. (1990) MR1090089
  52. Ziemer W. P., Weakly differentiable functions. Sobolev spaces and function of bounded variation, Graduate Texts in Mathematics 120. Springer-Verlag, New York, 1989. Zbl 0692.46022, MR 91e:46046. (1989) MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.