Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data
Alberto Fiorenza; Alain Prignet
ESAIM: Control, Optimisation and Calculus of Variations (2003)
- Volume: 9, page 317-341
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topFiorenza, Alberto, and Prignet, Alain. "Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 317-341. <http://eudml.org/doc/245900>.
@article{Fiorenza2003,
abstract = {We study the sequence $u_n$, which is solution of $-\operatorname\{div\}(a(x,\mathbb \{D\}u_n)) + \Phi ^\{\prime \prime \}(|u_n|)\,u_n= f_n+ g_n$ in $\Omega $ an open bounded set of $\{\mathbf \{R\}\}^N$ and $u_n= 0$ on $\partial \Omega $, when $f_n$ tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the $N$-function $\Phi $, and prove a non-existence result.},
author = {Fiorenza, Alberto, Prignet, Alain},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {elliptic equation; Orlicz space; measure; capacity},
language = {eng},
pages = {317-341},
publisher = {EDP-Sciences},
title = {Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data},
url = {http://eudml.org/doc/245900},
volume = {9},
year = {2003},
}
TY - JOUR
AU - Fiorenza, Alberto
AU - Prignet, Alain
TI - Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 317
EP - 341
AB - We study the sequence $u_n$, which is solution of $-\operatorname{div}(a(x,\mathbb {D}u_n)) + \Phi ^{\prime \prime }(|u_n|)\,u_n= f_n+ g_n$ in $\Omega $ an open bounded set of ${\mathbf {R}}^N$ and $u_n= 0$ on $\partial \Omega $, when $f_n$ tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the $N$-function $\Phi $, and prove a non-existence result.
LA - eng
KW - elliptic equation; Orlicz space; measure; capacity
UR - http://eudml.org/doc/245900
ER -
References
top- [1] D.R. Adams and L.I. Hedberg, Function spaces and potential theory. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 314 (1996). Zbl0834.46021MR1411441
- [2] N. Aissaoui, Bessel potentials in Orlicz spaces. Rev. Mat. Univ. Complut. Madrid 10 (1997) 55-79. Zbl0899.46019MR1452563
- [3] N. Aissaoui, Some developments of Strongly Nonlinear Potential Theory. Libertas Math. 19 (1999) 155-170. Zbl0976.31007MR1726166
- [4] N. Aissaoui and A. Benkirane, Capacités dans les espaces d’Orlicz. Ann. Sci. Math. Québec 18 (1994) 1-23. Zbl0822.31006
- [5] P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires. Ann. Inst. Fourier (Grenoble) 34 (1984) 185-206. Zbl0519.35002MR743627
- [6] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 240-273. Zbl0866.35037MR1354907
- [7] P. Bénilan, H. Brezis and M. Crandall, A semilinear elliptic equation in . Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975) 523-555. Zbl0314.35077MR390473
- [8] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations 17 (1992) 641-655. Zbl0812.35043MR1163440
- [9] H. Brezis, Nonlinear elliptic equations involving measures, in Contributions to nonlinear partial differential equations (Madrid, 1981). Pitman, Boston, Mass.-London, Res. Notes in Math. 89 1983) 82-89. Zbl0533.35038MR730798
- [10] G. Choquet, Theory of Capacities, Ann. Inst. Fourier (Grenoble) 5 (1953-1954) 131-295 (Ch. 1, Thm 4.1, p. 142). Zbl0064.35101MR80760
- [11] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa CL. Sci. 28 (1999) 741-808. Zbl0958.35045MR1760541
- [12] T.K. Donaldson and N.S. Trudinger, Orlicz–Sobolev spaces and embedding theorems. J. Funct. Anal. 8 (1971) 52-75. Zbl0216.15702
- [13] A. Fiorenza, An inequality for Jensen Means. Nonlinear Anal. 16 (1991) 191-198. Zbl0737.46009MR1090790
- [14] T. Gallouët and J.M. Morel, Resolution of a semilinear equation in . Proc. Roy. Soc. Edinburgh 96 (1984) 275-288. Zbl0573.35030MR760776
- [15] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces. Studia Math. 60 (1977) 33-59. Zbl0353.46019MR438102
- [16] V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces. World Scientific (1991). Zbl0751.46021MR1156767
- [17] M.A. Krasnosel’skii and Ya.B. Rutickii, Convex functions and Orlicz Spaces. Noordhoff Ltd. (1961). Zbl0095.09103
- [18] J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder. Bull. Soc. Math. France 93 (1965) 97-107. Zbl0132.10502
- [19] L. Maligranda, Orlicz Spaces and Interpolation. Dep. de Matematica Univ. Estadual de Campinas, Campinas, Brazil (1989). Zbl0874.46022MR2264389
- [20] J. Malý, Coarea properties of Sobolev functions, in Proc. Function Spaces, Differential Operators and Nonlinear Analysis (The Hans Triebel Anniversary Volume). Birkhäuser, Basel (to appear). Zbl1036.46025MR1984185
- [21] J. Malý, D. Swanson and W.P. Ziemer, Fine behavior of functions with gradient in a Lorentz space (in preparation).
- [22] V.G. Maz’ja and V.P. Havin, Nonlinear potential theory. Uspekhi Mat. Nauk 27 (1972) 67-138. English translation: Russian Math. Surveys 27 (1972) 71-148. Zbl0269.31004
- [23] L. Orsina and A. Prignet, Nonexistence of solutions for some nonlinear elliptic equations involving measures. Proc. Roy. Soc. Edinburgh Ser. A 130 (2000) 167-187. Zbl0953.35048MR1742585
- [24] L.E. Persson, Interpolation with a parameter function. Math. Scand. 59 (1986) 199-222. Zbl0619.46064MR884656
- [25] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces. Marcel Dekker (1991). Zbl0724.46032MR1113700
- [26] C.A. Rogers, Hausdorff Measures. Cambridge University Press (1970). Zbl0204.37601MR281862
- [27] E.M. Stein, Singular Integrals and Differentiability properties of functions. Princeton University Press (1970). Zbl0207.13501MR290095
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.