Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data

Alberto Fiorenza; Alain Prignet

ESAIM: Control, Optimisation and Calculus of Variations (2003)

  • Volume: 9, page 317-341
  • ISSN: 1292-8119

Abstract

top
We study the sequence u n , which is solution of - div ( a ( x , 𝔻 u n ) ) + Φ ' ' ( | u n | ) u n = f n + g n in Ω an open bounded set of 𝐑 N and u n = 0 on Ω , when f n tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the N -function Φ , and prove a non-existence result.

How to cite

top

Fiorenza, Alberto, and Prignet, Alain. "Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 317-341. <http://eudml.org/doc/245900>.

@article{Fiorenza2003,
abstract = {We study the sequence $u_n$, which is solution of $-\operatorname\{div\}(a(x,\mathbb \{D\}u_n)) + \Phi ^\{\prime \prime \}(|u_n|)\,u_n= f_n+ g_n$ in $\Omega $ an open bounded set of $\{\mathbf \{R\}\}^N$ and $u_n= 0$ on $\partial \Omega $, when $f_n$ tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the $N$-function $\Phi $, and prove a non-existence result.},
author = {Fiorenza, Alberto, Prignet, Alain},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {elliptic equation; Orlicz space; measure; capacity},
language = {eng},
pages = {317-341},
publisher = {EDP-Sciences},
title = {Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data},
url = {http://eudml.org/doc/245900},
volume = {9},
year = {2003},
}

TY - JOUR
AU - Fiorenza, Alberto
AU - Prignet, Alain
TI - Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 317
EP - 341
AB - We study the sequence $u_n$, which is solution of $-\operatorname{div}(a(x,\mathbb {D}u_n)) + \Phi ^{\prime \prime }(|u_n|)\,u_n= f_n+ g_n$ in $\Omega $ an open bounded set of ${\mathbf {R}}^N$ and $u_n= 0$ on $\partial \Omega $, when $f_n$ tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the $N$-function $\Phi $, and prove a non-existence result.
LA - eng
KW - elliptic equation; Orlicz space; measure; capacity
UR - http://eudml.org/doc/245900
ER -

References

top
  1. [1] D.R. Adams and L.I. Hedberg, Function spaces and potential theory. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 314 (1996). Zbl0834.46021MR1411441
  2. [2] N. Aissaoui, Bessel potentials in Orlicz spaces. Rev. Mat. Univ. Complut. Madrid 10 (1997) 55-79. Zbl0899.46019MR1452563
  3. [3] N. Aissaoui, Some developments of Strongly Nonlinear Potential Theory. Libertas Math. 19 (1999) 155-170. Zbl0976.31007MR1726166
  4. [4] N. Aissaoui and A. Benkirane, Capacités dans les espaces d’Orlicz. Ann. Sci. Math. Québec 18 (1994) 1-23. Zbl0822.31006
  5. [5] P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires. Ann. Inst. Fourier (Grenoble) 34 (1984) 185-206. Zbl0519.35002MR743627
  6. [6] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L 1 theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 240-273. Zbl0866.35037MR1354907
  7. [7] P. Bénilan, H. Brezis and M. Crandall, A semilinear elliptic equation in L 1 ( 𝐑 N ) . Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975) 523-555. Zbl0314.35077MR390473
  8. [8] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations 17 (1992) 641-655. Zbl0812.35043MR1163440
  9. [9] H. Brezis, Nonlinear elliptic equations involving measures, in Contributions to nonlinear partial differential equations (Madrid, 1981). Pitman, Boston, Mass.-London, Res. Notes in Math. 89 1983) 82-89. Zbl0533.35038MR730798
  10. [10] G. Choquet, Theory of Capacities, Ann. Inst. Fourier (Grenoble) 5 (1953-1954) 131-295 (Ch. 1, Thm 4.1, p. 142). Zbl0064.35101MR80760
  11. [11] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa CL. Sci. 28 (1999) 741-808. Zbl0958.35045MR1760541
  12. [12] T.K. Donaldson and N.S. Trudinger, Orlicz–Sobolev spaces and embedding theorems. J. Funct. Anal. 8 (1971) 52-75. Zbl0216.15702
  13. [13] A. Fiorenza, An inequality for Jensen Means. Nonlinear Anal. 16 (1991) 191-198. Zbl0737.46009MR1090790
  14. [14] T. Gallouët and J.M. Morel, Resolution of a semilinear equation in L 1 . Proc. Roy. Soc. Edinburgh 96 (1984) 275-288. Zbl0573.35030MR760776
  15. [15] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces. Studia Math. 60 (1977) 33-59. Zbl0353.46019MR438102
  16. [16] V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces. World Scientific (1991). Zbl0751.46021MR1156767
  17. [17] M.A. Krasnosel’skii and Ya.B. Rutickii, Convex functions and Orlicz Spaces. Noordhoff Ltd. (1961). Zbl0095.09103
  18. [18] J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder. Bull. Soc. Math. France 93 (1965) 97-107. Zbl0132.10502
  19. [19] L. Maligranda, Orlicz Spaces and Interpolation. Dep. de Matematica Univ. Estadual de Campinas, Campinas, Brazil (1989). Zbl0874.46022MR2264389
  20. [20] J. Malý, Coarea properties of Sobolev functions, in Proc. Function Spaces, Differential Operators and Nonlinear Analysis (The Hans Triebel Anniversary Volume). Birkhäuser, Basel (to appear). Zbl1036.46025MR1984185
  21. [21] J. Malý, D. Swanson and W.P. Ziemer, Fine behavior of functions with gradient in a Lorentz space (in preparation). 
  22. [22] V.G. Maz’ja and V.P. Havin, Nonlinear potential theory. Uspekhi Mat. Nauk 27 (1972) 67-138. English translation: Russian Math. Surveys 27 (1972) 71-148. Zbl0269.31004
  23. [23] L. Orsina and A. Prignet, Nonexistence of solutions for some nonlinear elliptic equations involving measures. Proc. Roy. Soc. Edinburgh Ser. A 130 (2000) 167-187. Zbl0953.35048MR1742585
  24. [24] L.E. Persson, Interpolation with a parameter function. Math. Scand. 59 (1986) 199-222. Zbl0619.46064MR884656
  25. [25] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces. Marcel Dekker (1991). Zbl0724.46032MR1113700
  26. [26] C.A. Rogers, Hausdorff Measures. Cambridge University Press (1970). Zbl0204.37601MR281862
  27. [27] E.M. Stein, Singular Integrals and Differentiability properties of functions. Princeton University Press (1970). Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.