Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity
Z. Belhachmi; J.-M. Sac-Epée; S. Tahir
Mathematical Modelling of Natural Phenomena (2009)
- Volume: 4, Issue: 1, page 1-20
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. Alberty, C. Carstensen, S. A. Funken, R. Klose. Matlab Implementation of the Finite Element Method in Elasticity. Berichtsreihe des Mathematischen Seminars Kiel, 00-21 (2000).
- D. N. Arnold, F. Brezzi, J. Douglas. PEERS: A new finite element for plane elasticity Japan J. Appl. Math., No. 1 (1984), 347–367.
- Z. Belhachmi, F. Ben Belgacem. Quadratic finite element for Signorini problem. Math. Comp., 72 (2003), No. 241, 83–104.
- Z. Belhachmi, J.M. Sac-Epée, J. Sokolowski. Mixed finite element methods for a smooth domain formulation of a crack problem. SIAM J. Numer. Anal., 43 (2005), No. 3, 1295–1320.
- F. Ben Belgacem. Numerical simulation of some variational inequalities arisen from unilateral contact problems by finite element method. Siam J. Numer. Anal, 37 (2000),No. 4, 1198–1216.
- F. Ben Belgacem, P. Hild, P. Laborde. Extension of the mortar finite element method to a variational inequality modelling unilateral contact. Math. Models Methods Appl. Sci., 9 (1999), No. 2, 287–303.
- F. Ben Belgacem, Y. Renard. Hybrid finite element methods for the Signorini problem. Math. Comput., 72 (2003), No. 243, 1117–1145.
- C. Bernardi, V. Girault. A local regularization operator for triangular and quadrilateral finite elements. SIAM. J. Numer. Anal., 35 (1998), No. 5, 1893–1916.
- D. Braess, O. Klaas, R. Niekamp, E. Stein, F. Wobschal. Error Indicators For Mixed Finite Elements in 2-dimensional Linear Elasticity. Comput. Methods. Appl. Mech. Engrg., 127 (1995), No. 1-4, 345–356.
- F. Brezzi, J. Douglas Jr, L.D. Marini. Two families of mixed finite elements for second order elliptic problems. Numer. Math., 47 (1985), No. 2, 217–235.
- F. Brezzi, M. Fortin. Mixed and hybrid finite element methods. Springer Verlag, New York, Springer Series in Computational Mathematics, 15, 1991.
- C. Carstensen, G. Dolzmann, S.A. Funken, D.S. Helm. Locking-free adaptive mixed finite element in linear elasticity. Comput. Methods. Appl.Mech. Engrg., 190 (2000), No. 13-14, 1701–1718.
- P.G. Ciarlet. Basic Error Estimates for Elliptic Problems. In the Handbook of Numerical Analysis, Vol II, P.G. Ciarlet & J.-L. Lions eds, North-Holland, (1991), 17–351.
- P. Coorevits, P. Hild, K. Lhalouani, T. Sassi. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comp., 71, (2001), No. 237, 1–25.
- G. Duvaut, J.-L. Lions. Les inéquations en mécanique et en physique. Dunod, 1972.
- V. Girault, P.-A. Raviart. Finite element methods for the Navier-Stokes equations, Theory and algorithms. Springer-Verlag 1986.
- R. Glowinski. Lectures on numerical methods for nonlinear variational problems. Springer, Berlin, 1980.
- J. Haslinger, I. Hlaváček. Contact between Elastic Bodies -2.Finite Element Analysis, Aplikace Matematiky, 26 (1981), 263–290.
- J. Haslinger, I. Hlaváček, J. Nečas. Numerical Methods for Unilateral Problems in Solid Mechanics, in the Handbook of Numerical Analysis, Vol IV, Part 2, P.G. Ciarlet & J.-L. Lions eds, North-Holland, 1996.
- F. Hecht, O. Pironneau. FreeFem++, www.freefem.org
- P. Hild, Y. Renard. An error estimates for the Signorini problem with Coulomb friction approximated by finite elements. Siam J. Numer. Anal., 45 (2007), No. 5, 2012–2031.
- S. Hüeber, B.I. Wohlmuth. An optimal a priori error estimates for nonlinear multibody contact problems. SIAM J. Numer. Anal., 43 (2005), No. 1, 156–173
- A.M. Khludnev, J. Sokolowski. Smooth domain method for crack problems. Quarterly of Applied Mathematics., 62 (2004), No. 3, 401–422.
- N. Kikuchi, J. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, 1988.
- D. Kinderlehrer, G. Stamppachia. An introduction to variational inequalities and their applications, Academic Press, 1980.
- K. Lhalouani, T. Sassi. Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Numer. Math., 7 (1999), No. 1, 23–30.
- L. Slimane, A. Bendali, P. Laborde. Mixed formulations for a class of variational inequalities. M2AN, 38 (2004), 1, 177–201.
- R. Stenberg. A family of mixed finite elements for the elasticity problem. Numer. Math., 53 (1988), 5, 513–538.
- S. Tahir. Méthodes d'approximation par éléments finis et analyse a posteriori d'inéquations variationnelles modélisant des problèmes de fissures unilatérales en élasticité linéaire. Ph.D. Thesis, University of Metz, France (2006).
- S. Tahir, Z. Belhachmi. Mixed finite elements discretizations of some variational inequalities arising in elasticity problems in domains with cracks. Electron. J. Diff. Eqns., Conference 11 (2004), 33–40.
- Z.-H. Zhong. Finite Element Procedures for Contact-Impact Problems. Oxford. University. Press, Oxford 1993.