Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition

Francine Meylan

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 1, page 13-19
  • ISSN: 0391-173X

Abstract

top
Let X be a complex Banach space. Recall that X admits afinite-dimensional Schauder decompositionif there exists a sequence { X n } n = 1 of finite-dimensional subspaces of X , such that every x X has a unique representation of the form x = n = 1 x n , with x n X n for every n . The finite-dimensional Schauder decomposition is said to beunconditionalif, for every x X , the series x = n = 1 x n , which represents x , converges unconditionally, that is, n = 1 x π ( n ) converges for every permutation π of the integers. For short, we say that X admits an unconditional F.D.D.We show that if X admits an unconditional F.D.D. then the following Runge approximation property holds:

How to cite

top

Meylan, Francine. "Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (2006): 13-19. <http://eudml.org/doc/239731>.

@article{Meylan2006,
abstract = {Let $X$ be a complex Banach space. Recall that $X$ admits afinite-dimensional Schauder decompositionif there exists a sequence $\{\lbrace X_n\rbrace \}_\{n=1\}^\{\infty \}$ of finite-dimensional subspaces of $X,$ such that every $x \in X$ has a unique representation of the form $x= \sum _\{n=1\}^\{\infty \}x_n,$ with $x_n \in X_n$ for every $n.$ The finite-dimensional Schauder decomposition is said to beunconditionalif, for every $x \in X,$ the series $x= \sum _\{n=1\}^\{\infty \}x_n,$ which represents $x,$ converges unconditionally, that is, $ \sum _\{n=1\}^\{\infty \}x_\{\pi (n)\}$ converges for every permutation $\pi $ of the integers. For short, we say that $X$ admits an unconditional F.D.D.We show that if X admits an unconditional F.D.D. then the following Runge approximation property holds:},
author = {Meylan, Francine},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Runge type approximation; complex analysis on Banach spaces},
language = {eng},
number = {1},
pages = {13-19},
publisher = {Scuola Normale Superiore, Pisa},
title = {Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition},
url = {http://eudml.org/doc/239731},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Meylan, Francine
TI - Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 1
SP - 13
EP - 19
AB - Let $X$ be a complex Banach space. Recall that $X$ admits afinite-dimensional Schauder decompositionif there exists a sequence ${\lbrace X_n\rbrace }_{n=1}^{\infty }$ of finite-dimensional subspaces of $X,$ such that every $x \in X$ has a unique representation of the form $x= \sum _{n=1}^{\infty }x_n,$ with $x_n \in X_n$ for every $n.$ The finite-dimensional Schauder decomposition is said to beunconditionalif, for every $x \in X,$ the series $x= \sum _{n=1}^{\infty }x_n,$ which represents $x,$ converges unconditionally, that is, $ \sum _{n=1}^{\infty }x_{\pi (n)}$ converges for every permutation $\pi $ of the integers. For short, we say that $X$ admits an unconditional F.D.D.We show that if X admits an unconditional F.D.D. then the following Runge approximation property holds:
LA - eng
KW - Runge type approximation; complex analysis on Banach spaces
UR - http://eudml.org/doc/239731
ER -

References

top
  1. [1] S. Dineen, “Complex Analysis on Infinite Dimensional Spaces”, Springer, Berlin, 1999. Zbl1034.46504MR1705327
  2. [2] N. Dunford and T. Schwartz, “Linear Operators” I, John Wiley and Sons, New York, 1988. Zbl0084.10402
  3. [3] B. Josefson, Approximation of holomorphic functions in certain Banach spaces, Internat. J. Math. 15 (2004), 467–471. Zbl1061.46041
  4. [4] L. Lempert, Approximation de fonctions holomorphes d’un nombre infini de variables, Ann. Inst. Fourier (Grenoble) 49 (1999), 1293–1304. Zbl0944.46046MR1703089
  5. [5] L. Lempert, The Dolbeaut complex in infinite dimensions, III, Invent. Math. 142 (2000), 579–603. Zbl0983.32010MR1804162
  6. [6] L. Lempert, Approximation of holomorphic functions of infinitely many variables, Ann. Inst. Fourier (Grenoble) 50 (2000), 423–442. Zbl0969.46032MR1775356
  7. [7] L. Lempert, Seminar given at Purdue University, 2004. 
  8. [8] J. Lindenstrauss and L. Tzafriri, “Classical Banach Spaces I, Sequence Spaces”, Springer-Verlag, Berlin Heidelberg New York., Vol. 92, 1977. Zbl0362.46013MR500056
  9. [9] I. Patyi, On the ¯ -equation in a Banach space, Bull. Soc. Math. France. 128 (2000), 391–406. Zbl0967.32036MR1792475
  10. [10] I. Singer, “Bases in Banach Spaces”, I-II, Springer, Berlin, 1981. Zbl0198.16601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.