On the Curvature and Heat Flow on Hamiltonian Systems
Analysis and Geometry in Metric Spaces (2014)
- Volume: 2, Issue: 1, page 81-114, electronic only
- ISSN: 2299-3274
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. A. Agrachev, Curvature and hyperbolicity of Hamiltonian systems (Russian), Tr. Mat. Inst. Steklova 256 (2007), Din. Sist. i Optim., 31-53; translation in Proc. Steklov Inst. Math. 256 (2007), 26-46.
- [2] A. A. Agrachev, Geometry of optimal control problems and Hamiltonian systems, Nonlinear and optimal control theory, 1-59, Lecture Notes in Math., 1932, Springer, Berlin, 2008.
- [3] A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry. I. Regular extremals, J. Dynam. Control Systems 3 (1997), 343-389. Zbl0952.49019
- [4] A. A. Agrachev and P. W. Y. Lee, Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, Preprint (2009). Available at arXiv:0903.2550
- [5] A. A. Agrachev and P.W. Y. Lee, Bishop and Laplacian comparison theorems on three dimensional contact subriemannian manifolds with symmetry, to appear in J. Geom. Anal. Available at arXiv:1105.2206
- [6] M. Agueh, Finsler structure in the p-Wasserstein space and gradient flows, C. R.Math. Acad. Sci. Paris 350 (2012), 35-40. Zbl1239.53021
- [7] J. C. Álvarez Paiva and C. E. Durán, Geometric invariants of fanning curves, Adv. in Appl. Math. 42 (2009), 290-312. Zbl1167.53016
- [8] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser Verlag, Basel, 2005. Zbl1090.35002
- [9] L. Ambrosio, N. Gigli and G. Savaré, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam. 29 (2013), 969-996.[Crossref] Zbl1287.46027
- [10] L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math. 195 (2014), 289-391. Zbl1312.53056
- [11] D. Bakry and M. Émery, Diffusions hypercontractives (French), Séminaire de probabilités, XIX, 1983/84, 177-206, Lecture Notes in Math. 1123, Springer, Berlin, 1985.
- [12] D. Bao, S.-S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, New York, 2000. Zbl0954.53001
- [13] P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS) 9 (2007), 85-121.[Crossref] Zbl1241.49025
- [14] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417. Zbl0738.46011
- [15] H. Brézis, Opérateursmaximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French), North- Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.
- [16] D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), 219-257.
- [17] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. Zbl0226.47038
- [18] M. Erbar, The heat equation on manifolds as a gradient flow in the Wasserstein space, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), 1-23.
- [19] A. Fathi and A. Figalli, Optimal transportation on non-compact manifolds, Israel J. Math. 175 (2010), 1-59. Zbl1198.49044
- [20] P. Foulon, Géométrie des équations différentielles du second ordre (French), Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), 1-28.
- [21] N. Fusco, M. Gori and F. Maggi, A remark on Serrin’s theorem, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 425-433. Zbl1215.49024
- [22] N. Gigli, On the differential structure of metric measure spaces and applications, Preprint (2012). Available at arXiv:1205.6622
- [23] N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math. 66 (2013), 307-331. Zbl1267.58014
- [24] N. Gigli and S. Ohta, First variation formula in Wasserstein spaces over compact Alexandrov spaces, Canad. Math. Bull. 55 (2012), 723-735.[Crossref] Zbl1264.53050
- [25] J. Grifone, Structure presque-tangente et connexions. I (French), Ann. Inst. Fourier (Grenoble) 22 (1972), 287-334.[Crossref] Zbl0219.53032
- [26] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), 1-17. Zbl0915.35120
- [27] N. Juillet, Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int.Math. Res. Not. IMRN (2009), 2347-2373. Zbl1176.53053
- [28] M. Kell, On interpolation and curvature via Wasserstein geodesics, Preprint (2013). Available at arXiv:1311.5407
- [29] M. Kell, q-heat flow and the gradient flow of the Renyi entropy in the p-Wasserstein space, Preprint (2014). Available at arXiv:1401.0840
- [30] P. W. Y. Lee, A remark on the potentials of optimal transport maps, Acta Appl. Math. 115 (2011), 123-138. Zbl1223.49050
- [31] P. W. Y. Lee, Displacement interpolations from a Hamiltonian point of view, J. Funct. Anal. 265 (2013), 3163-3203. Zbl1285.53011
- [32] P. W. Y. Lee, C. Li and I. Zelenko, Measure contraction properties of contact sub-Riemannian manifolds with symmetry, Preprint (2013). Available at arXiv:1304.2658
- [33] J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal. 245 (2007), 311-333. Zbl1119.53028
- [34] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), 903-991. Zbl1178.53038
- [35] J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (2011), 2250-2292. Zbl1237.60058
- [36] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199-253. Zbl0914.58008
- [37] R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001), 589-608.[Crossref] Zbl1011.58009
- [38] S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007), 805-828. Zbl1176.28016
- [39] S. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math. 131 (2009), 475-516. Zbl1169.53053
- [40] S. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry,Math. Ann. 343 (2009), 669-699. Zbl1160.53033
- [41] S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211-249. Zbl1175.49044
- [42] S. Ohta, Vanishing S-curvature of Randers spaces, Differential Geom. Appl. 29 (2011), 174-178.[Crossref] Zbl1215.53067
- [43] S. Ohta, Splitting theorems for Finslermanifolds of nonnegative Ricci curvature, to appear in J. Reine Angew.Math. Available at arXiv:1203.0079
- [44] S. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), 1386-1433. Zbl1176.58012
- [45] S. Ohta and K.-T. Sturm, Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal. 204 (2012), 917-944. Zbl1257.53098
- [46] S. Ohta and K.-T. Sturm, Bochner-Weitzenböck formula and Li-Yau estimates on Finslermanifolds, Adv.Math. 252 (2014), 429-448. Zbl1321.53089
- [47] S. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies, Adv. Math. 228 (2011), 1742-1787. Zbl1223.53032
- [48] S. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies. II, Comm. Anal. Geom. 21 (2013), 687-785.[Crossref] Zbl1315.53015
- [49] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), 361-400. Zbl0985.58019
- [50] Z. Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997), 235-242. Zbl0902.53032
- [51] M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 923-940. Zbl1078.53028
- [52] G. Savaré, Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds, C. R. Math. Acad. Sci. Paris 345 (2007), 151-154. Zbl1125.53064
- [53] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc. 101 (1961), 139-167. Zbl0102.04601
- [54] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), 306-328. Zbl0919.53021
- [55] Z. Shen, Lectures on Finsler geometry, World Scientific Publishing Co., Singapore, 2001. Zbl0974.53002
- [56] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), 65-131.
- [57] K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), 133-177.
- [58] C. Villani, Optimal transport, old and new, Springer-Verlag, Berlin, 2009.
- [59] G. Wang and C. Xia, A sharp lower bound for the first eigenvalue on Finsler manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 983-996. Zbl1286.35179
- [60] G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), 377-405. Zbl1189.53036
- [61] C. Xia, Local gradient estimate for harmonic functions on Finsler manifolds, to appear in Calc. Var. Partial Differential Equations. Available at arXiv:1308.3609