Γ -convergence of discrete approximations to interfaces with prescribed mean curvature

Giovanni Bellettini; Maurizio Paolini; Claudio Verdi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1990)

  • Volume: 1, Issue: 4, page 317-328
  • ISSN: 1120-6330

Abstract

top
The numerical approximation of the minimum problem: min A Ω F ~ A , is considered, where F ~ A = P Ω A + cos θ H n - 1 A Ω - A κ . The solution to this problem is a set A Ω R n with prescribed mean curvature κ and contact angle θ at the intersection of A with Ω . The functional F ~ is first relaxed with a sequence of nonconvex functionals defined in H 1 Ω which, in turn, are discretized by finite elements. The Γ -convergence of the discrete functionals to F ~ as well as the compactness of any sequence of discrete absolute minimizers are proven.

How to cite

top

Bellettini, Giovanni, Paolini, Maurizio, and Verdi, Claudio. "\( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.4 (1990): 317-328. <http://eudml.org/doc/244180>.

@article{Bellettini1990,
abstract = {The numerical approximation of the minimum problem: \( \min\_\{A \subseteq \Omega\} \tilde\{\mathcal\{F\}\}(A) \), is considered, where \( \tilde\{\mathcal\{F\}\}(A) = P\_\{\Omega\}(A) + \cos(\theta) \mathcal\{H\}^\{n-1\}(\partial A \cap \partial \Omega) - \int\_\{A\} \kappa \). The solution to this problem is a set \( A \subseteq \Omega \subset \mathbb\{R\}^\{n\} \) with prescribed mean curvature \( \kappa \) and contact angle \( \theta \) at the intersection of \( \partial A \) with \( \partial \Omega \). The functional \( \tilde\{\mathcal\{F\}\} \) is first relaxed with a sequence of nonconvex functionals defined in \( H^\{1\}(\Omega) \) which, in turn, are discretized by finite elements. The \( \Gamma \)-convergence of the discrete functionals to \( \tilde\{\mathcal\{F\}\} \) as well as the compactness of any sequence of discrete absolute minimizers are proven.},
author = {Bellettini, Giovanni, Paolini, Maurizio, Verdi, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Calculus of variations; Surfaces with prescribed mean curvature; Finite elements; Convergence of discrete approximations; numerical approximation; prescribed mean curvature; - convergence},
language = {eng},
month = {12},
number = {4},
pages = {317-328},
publisher = {Accademia Nazionale dei Lincei},
title = {\( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature},
url = {http://eudml.org/doc/244180},
volume = {1},
year = {1990},
}

TY - JOUR
AU - Bellettini, Giovanni
AU - Paolini, Maurizio
AU - Verdi, Claudio
TI - \( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/12//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 4
SP - 317
EP - 328
AB - The numerical approximation of the minimum problem: \( \min_{A \subseteq \Omega} \tilde{\mathcal{F}}(A) \), is considered, where \( \tilde{\mathcal{F}}(A) = P_{\Omega}(A) + \cos(\theta) \mathcal{H}^{n-1}(\partial A \cap \partial \Omega) - \int_{A} \kappa \). The solution to this problem is a set \( A \subseteq \Omega \subset \mathbb{R}^{n} \) with prescribed mean curvature \( \kappa \) and contact angle \( \theta \) at the intersection of \( \partial A \) with \( \partial \Omega \). The functional \( \tilde{\mathcal{F}} \) is first relaxed with a sequence of nonconvex functionals defined in \( H^{1}(\Omega) \) which, in turn, are discretized by finite elements. The \( \Gamma \)-convergence of the discrete functionals to \( \tilde{\mathcal{F}} \) as well as the compactness of any sequence of discrete absolute minimizers are proven.
LA - eng
KW - Calculus of variations; Surfaces with prescribed mean curvature; Finite elements; Convergence of discrete approximations; numerical approximation; prescribed mean curvature; - convergence
UR - http://eudml.org/doc/244180
ER -

References

top
  1. AMBROSIO, L., Variational problems in SBV. Acta Applicandae Matematicae, 17, 1989, 1-40. Zbl0697.49004MR1029833DOI10.1007/BF00052492
  2. BALDO, S., Minimal interface criterion for phase transitions and mixture of a Cahn Hilliard fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl0702.49009MR1051228
  3. BALDO, S. - BELLETTINI, G., Γ -convergence and numerical analysis: an application to the minimal partitions problem. Ricerche di Matematica, to appear. Zbl0755.65064MR1191885
  4. BELLETTINI, G. - PAOLINI, M. - VERDI, C., Numerical minimization of geometrical type problems related to calculus of variations. Calcolo, to appear. Zbl0733.49039MR1141029DOI10.1007/BF02575797
  5. BELLETTINI, G. - PAOLINI, M. - VERDI, C., Front-tracking and variational methods to approximate interfaces with prescribed mean curvature. Proceedings of the Conference on Numerical Methods for Free Boundary Problems, Birkhäuser, Stuttgart, to appear. Zbl0754.65065MR1118855
  6. CIARLET, P. G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam1978. Zbl0511.65078MR520174
  7. DAL MASO, G. - MOREL, J. M. - SOLIMINI, S., A variational method in image segmentation: existence and approximation results. Preprint S.I.S.S.A., Trieste, 48 M, 1988, 1-79. Zbl0772.49006MR1149865DOI10.1007/BF02392977
  8. DE GIORGI, E., Free discontinuity problems in calculus of variations. Proceedings of the Meeting in honour of J. L. Lions (6-10/6/1988). North-Holland, Amsterdam, to appear. Zbl0758.49002MR1110593
  9. DE GIORGI, E. - AMBROSIO, L., Su un nuovo tipo di funzionale del calcolo delle variazioni. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, fasc. 2, 1988, 199-210. Zbl0715.49014MR1152641
  10. DE GIORGI, E. - CARRIERO, M. - LEACI, A., Existence theorems for a minimum problems with free discontinuity sets. Arch. Rational Mech. Anal., 108, 1989, 195-218. Zbl0682.49002MR1012174DOI10.1007/BF01052971
  11. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, vol. 58, 1975, 842-850. Zbl0339.49005MR448194
  12. FEDERER, H., Geometric Measure Theory. Springer Verlag, Berlin1968. Zbl0874.49001MR257325
  13. FINN, R., Equilibrium Capillary Surfaces. Springer Verlag, Berlin1986. Zbl0583.35002MR816345DOI10.1007/978-1-4613-8584-4
  14. MODICA, L., The gradient theory of phase transitions and minimal interface criterion. Arch. Rational Mech. Anal., 98, 1987, 123-142. Zbl0616.76004MR866718DOI10.1007/BF00251230
  15. MODICA, L. - MORTOLA, S., Un esempio di Γ -convergenza. Boll. Un. Mat. Ital., 5, 14 B, 1977, 285-299. Zbl0356.49008MR445362
  16. MUMFORD, D. - SHAH, J., Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Applied Math., 42, 1989, 577-685. Zbl0691.49036MR997568DOI10.1002/cpa.3160420503
  17. OWEN, N. C. - RUBINSTEIN, J. - STERNBERG, P., Minimizer and gradient flows for singularly perturbed bistable potentials with a Dirichlet condition. To appear. Zbl0722.49021
  18. ZIEMER, W. P., Weakly Differentiable Functions. Springer Verlag, Berlin1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.