-convergence of discrete approximations to interfaces with prescribed mean curvature
Giovanni Bellettini; Maurizio Paolini; Claudio Verdi
- Volume: 1, Issue: 4, page 317-328
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBellettini, Giovanni, Paolini, Maurizio, and Verdi, Claudio. "\( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.4 (1990): 317-328. <http://eudml.org/doc/244180>.
@article{Bellettini1990,
abstract = {The numerical approximation of the minimum problem: \( \min\_\{A \subseteq \Omega\} \tilde\{\mathcal\{F\}\}(A) \), is considered, where \( \tilde\{\mathcal\{F\}\}(A) = P\_\{\Omega\}(A) + \cos(\theta) \mathcal\{H\}^\{n-1\}(\partial A \cap \partial \Omega) - \int\_\{A\} \kappa \). The solution to this problem is a set \( A \subseteq \Omega \subset \mathbb\{R\}^\{n\} \) with prescribed mean curvature \( \kappa \) and contact angle \( \theta \) at the intersection of \( \partial A \) with \( \partial \Omega \). The functional \( \tilde\{\mathcal\{F\}\} \) is first relaxed with a sequence of nonconvex functionals defined in \( H^\{1\}(\Omega) \) which, in turn, are discretized by finite elements. The \( \Gamma \)-convergence of the discrete functionals to \( \tilde\{\mathcal\{F\}\} \) as well as the compactness of any sequence of discrete absolute minimizers are proven.},
author = {Bellettini, Giovanni, Paolini, Maurizio, Verdi, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Calculus of variations; Surfaces with prescribed mean curvature; Finite elements; Convergence of discrete approximations; numerical approximation; prescribed mean curvature; - convergence},
language = {eng},
month = {12},
number = {4},
pages = {317-328},
publisher = {Accademia Nazionale dei Lincei},
title = {\( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature},
url = {http://eudml.org/doc/244180},
volume = {1},
year = {1990},
}
TY - JOUR
AU - Bellettini, Giovanni
AU - Paolini, Maurizio
AU - Verdi, Claudio
TI - \( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/12//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 4
SP - 317
EP - 328
AB - The numerical approximation of the minimum problem: \( \min_{A \subseteq \Omega} \tilde{\mathcal{F}}(A) \), is considered, where \( \tilde{\mathcal{F}}(A) = P_{\Omega}(A) + \cos(\theta) \mathcal{H}^{n-1}(\partial A \cap \partial \Omega) - \int_{A} \kappa \). The solution to this problem is a set \( A \subseteq \Omega \subset \mathbb{R}^{n} \) with prescribed mean curvature \( \kappa \) and contact angle \( \theta \) at the intersection of \( \partial A \) with \( \partial \Omega \). The functional \( \tilde{\mathcal{F}} \) is first relaxed with a sequence of nonconvex functionals defined in \( H^{1}(\Omega) \) which, in turn, are discretized by finite elements. The \( \Gamma \)-convergence of the discrete functionals to \( \tilde{\mathcal{F}} \) as well as the compactness of any sequence of discrete absolute minimizers are proven.
LA - eng
KW - Calculus of variations; Surfaces with prescribed mean curvature; Finite elements; Convergence of discrete approximations; numerical approximation; prescribed mean curvature; - convergence
UR - http://eudml.org/doc/244180
ER -
References
top- AMBROSIO, L., Variational problems in SBV. Acta Applicandae Matematicae, 17, 1989, 1-40. Zbl0697.49004MR1029833DOI10.1007/BF00052492
- BALDO, S., Minimal interface criterion for phase transitions and mixture of a Cahn Hilliard fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl0702.49009MR1051228
- BALDO, S. - BELLETTINI, G., -convergence and numerical analysis: an application to the minimal partitions problem. Ricerche di Matematica, to appear. Zbl0755.65064MR1191885
- BELLETTINI, G. - PAOLINI, M. - VERDI, C., Numerical minimization of geometrical type problems related to calculus of variations. Calcolo, to appear. Zbl0733.49039MR1141029DOI10.1007/BF02575797
- BELLETTINI, G. - PAOLINI, M. - VERDI, C., Front-tracking and variational methods to approximate interfaces with prescribed mean curvature. Proceedings of the Conference on Numerical Methods for Free Boundary Problems, Birkhäuser, Stuttgart, to appear. Zbl0754.65065MR1118855
- CIARLET, P. G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam1978. Zbl0511.65078MR520174
- DAL MASO, G. - MOREL, J. M. - SOLIMINI, S., A variational method in image segmentation: existence and approximation results. Preprint S.I.S.S.A., Trieste, 48 M, 1988, 1-79. Zbl0772.49006MR1149865DOI10.1007/BF02392977
- DE GIORGI, E., Free discontinuity problems in calculus of variations. Proceedings of the Meeting in honour of J. L. Lions (6-10/6/1988). North-Holland, Amsterdam, to appear. Zbl0758.49002MR1110593
- DE GIORGI, E. - AMBROSIO, L., Su un nuovo tipo di funzionale del calcolo delle variazioni. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, fasc. 2, 1988, 199-210. Zbl0715.49014MR1152641
- DE GIORGI, E. - CARRIERO, M. - LEACI, A., Existence theorems for a minimum problems with free discontinuity sets. Arch. Rational Mech. Anal., 108, 1989, 195-218. Zbl0682.49002MR1012174DOI10.1007/BF01052971
- DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, vol. 58, 1975, 842-850. Zbl0339.49005MR448194
- FEDERER, H., Geometric Measure Theory. Springer Verlag, Berlin1968. Zbl0874.49001MR257325
- FINN, R., Equilibrium Capillary Surfaces. Springer Verlag, Berlin1986. Zbl0583.35002MR816345DOI10.1007/978-1-4613-8584-4
- MODICA, L., The gradient theory of phase transitions and minimal interface criterion. Arch. Rational Mech. Anal., 98, 1987, 123-142. Zbl0616.76004MR866718DOI10.1007/BF00251230
- MODICA, L. - MORTOLA, S., Un esempio di -convergenza. Boll. Un. Mat. Ital., 5, 14 B, 1977, 285-299. Zbl0356.49008MR445362
- MUMFORD, D. - SHAH, J., Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Applied Math., 42, 1989, 577-685. Zbl0691.49036MR997568DOI10.1002/cpa.3160420503
- OWEN, N. C. - RUBINSTEIN, J. - STERNBERG, P., Minimizer and gradient flows for singularly perturbed bistable potentials with a Dirichlet condition. To appear. Zbl0722.49021
- ZIEMER, W. P., Weakly Differentiable Functions. Springer Verlag, Berlin1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.