A special version of the Schwarz lemma on an infinite dimensional domain

Tatsuhiro Honda

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 2, page 107-110
  • ISSN: 1120-6330

Abstract

top
Let B be the open unit ball of a Banach space E , and let f : B B be a holomorphic map with f 0 = 0 . In this paper, we discuss a condition whereby f is a linear isometry on E .

How to cite

top

Honda, Tatsuhiro. "A special version of the Schwarz lemma on an infinite dimensional domain." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.2 (1997): 107-110. <http://eudml.org/doc/244249>.

@article{Honda1997,
abstract = { Let \( B \) be the open unit ball of a Banach space \( E \), and let \( f : B \rightarrow B \) be a holomorphic map with \( f(0) = 0 \). In this paper, we discuss a condition whereby \( f \) is a linear isometry on \( E \).},
author = {Honda, Tatsuhiro},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Banach space; Schwarz lemma; Complex geodesic; Projective space; infinite-dimensional domain; isometry},
language = {eng},
month = {7},
number = {2},
pages = {107-110},
publisher = {Accademia Nazionale dei Lincei},
title = {A special version of the Schwarz lemma on an infinite dimensional domain},
url = {http://eudml.org/doc/244249},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Honda, Tatsuhiro
TI - A special version of the Schwarz lemma on an infinite dimensional domain
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/7//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 2
SP - 107
EP - 110
AB - Let \( B \) be the open unit ball of a Banach space \( E \), and let \( f : B \rightarrow B \) be a holomorphic map with \( f(0) = 0 \). In this paper, we discuss a condition whereby \( f \) is a linear isometry on \( E \).
LA - eng
KW - Banach space; Schwarz lemma; Complex geodesic; Projective space; infinite-dimensional domain; isometry
UR - http://eudml.org/doc/244249
ER -

References

top
  1. BELKHCHICHA, L., Caractérisation des isomorphismes analytiques sur la boule-unité de C n pour une norme. Math. Z., 215, 1994, 129-141. Zbl0801.32009MR1254816DOI10.1007/BF02571702
  2. DINEEN, S., Complex Analysis in Locally Convex Spaces. North-HollandMath. Studies, 57, 1981. Zbl0484.46044MR640093
  3. DINEEN, S., The Schwarz Lemma. Oxford Mathematical Monographs, 1989. Zbl0708.46046MR1033739
  4. DINEEN, S. - TIMONEY, R. M., Complex Geodesics on Convex Domains. Progress in Functional Analysis, 1992, 333-365. Zbl0785.46044MR1150757DOI10.1016/S0304-0208(08)70330-X
  5. DINEEN, S. - TIMONEY, R. M. - VIGUÉ, J. P., Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. Zbl0603.46052MR848840
  6. FRANZONI, T. - VESENTINI, E., Holomorphic Maps and Invariant Distances. North-HollandMath. Studies, 40, 1980. Zbl0447.46040MR563329
  7. JARNICKI, M. - PFLUG, P., Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin-New York1983. Zbl0789.32001MR1242120DOI10.1515/9783110870312
  8. HAMADA, H., A Schwarz lemma in several complex variables. In: Proceedings of the Third International Colloquium on Finite or Infinite Dimensional Complex Analysis. Seoul, Korea, 1995, 105-110. 
  9. NISHIHARA, M., On the indicator of growth of entire functions of exponential type in infinite dimensional spaces and the Levi problem in infinite dimensional projective spaces. Portugaliae Math., 52, 1995, 61-94. Zbl0935.32003MR1324083
  10. VESENTINI, E., Variations on a theme of Carathéodory. Ann. Scuola Norm. Sup. Pisa, 7 (4), 1979, 39-68. Zbl0413.46039MR529475
  11. VESENTINI, E., Complex geodesics. Compositio Math., 44, 1981, 375-394. Zbl0488.30015MR662466
  12. VESENTINI, E., Complex geodesics and holomorphic maps. Sympos. Math., 26, 1982, 211-230. Zbl0506.32008MR663034
  13. VIGUÉ, J. P., Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes. Indiana Univ. Math. J., 40, 1991, 239-304. Zbl0733.32025
  14. VIGUÉ, J. P., Le lemme de Schwarz et la caractérisation des automorphismes analytiques. Astérisque, 217, 1993, 241-249. Zbl0798.32023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.