Variations on a theme of Carathéodory

Edoardo Vesentini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 1, page 39-68
  • ISSN: 0391-173X

How to cite

top

Vesentini, Edoardo. "Variations on a theme of Carathéodory." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (1979): 39-68. <http://eudml.org/doc/83807>.

@article{Vesentini1979,
author = {Vesentini, Edoardo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {pseudo-distances; Caratheodory distance; logarithmically plurisubharmonic function; holomorphic automorphisms; bounded Reinhardt domains; Kobayashi distances; Schwarz lemma; Banach algebras; Hermitian involution},
language = {eng},
number = {1},
pages = {39-68},
publisher = {Scuola normale superiore},
title = {Variations on a theme of Carathéodory},
url = {http://eudml.org/doc/83807},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Vesentini, Edoardo
TI - Variations on a theme of Carathéodory
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 1
SP - 39
EP - 68
LA - eng
KW - pseudo-distances; Caratheodory distance; logarithmically plurisubharmonic function; holomorphic automorphisms; bounded Reinhardt domains; Kobayashi distances; Schwarz lemma; Banach algebras; Hermitian involution
UR - http://eudml.org/doc/83807
ER -

References

top
  1. [1] A. Andreotti - R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces, Trans. Amer. Math. Soc., 111 (1964), pp. 345-366. Zbl0134.06001MR159961
  2. [2] M. Brelot, Elements de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1965. Zbl0084.30903MR106366
  3. [3] J.W.M. Ford, A square root lemma for Banach star-algebras, J. London Math. Soc., 42 (1967), pp. 521-522. Zbl0145.38702MR215107
  4. [4] L.A. Harris, Schwarz's lemma in normed linear spaces, Proc. Nat. Acad. Sci. USA, 62 (1969), pp. 1014-1017. Zbl0199.19401MR275179
  5. [5] L.A. Harris, Banach algebras with involution and Möbius transformations, J. Functional Analysis, 11 (1972), pp. 1-16. Zbl0239.46058MR352994
  6. [6] E. Hille - R.S. Phillips, Functional analysis and semigroups, Rev. Edition, Colloquium Publications, Vol. 31, Amer. Math. Soc., Providence, R. I., 1957. Zbl0078.10004MR89373
  7. [7] H. Horstmann, Caratheodorysche Metrik und Regularitätshullen, Math. Ann., 108 (1933), pp. 208-217. Zbl0006.21302MR1512845JFM59.0341.02
  8. [8] W. Kaup - H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc., 58 (1976), pp. 129-133. Zbl0337.32012MR422704
  9. [9] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970. Zbl0207.37902MR277770
  10. [10] N. Kritikos, Über analytische Abbildungen des Gebietes |x| + |y| &lt; 1 auf sich, Bull. Soc. Math. Grèce, 8 (1927), pp. 42-45. Zbl53.0315.03JFM53.0315.03
  11. [11] N. Kritikos, Über analytische Abbildungen einer Klasse von vier dimensionalen Gebieten, Math. Ann., 99 (1928), pp. 321-341. MR1512453JFM54.0373.02
  12. [12] R. Narasimhan, The Levi problem for complex spaces. II, Math. Ann., 146 (1962), pp. 195-216. Zbl0131.30801MR182747
  13. [13] P. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North Holland, Amsterdam, 1937. Zbl0251.46049
  14. [14] V. Pták, On the spectral radius in Banach algebras with involution, Bull. London Math. Soc., 2 (1970), pp. 327-334. Zbl0209.44403MR275175
  15. [15] V. Pták, Banach algebras with involution, Manuscripta Math., 6 (1972), pp. 245-290. Zbl0229.46054MR296705
  16. [16] T. Radó, Subharmonic functions, Springer-Verlag, Berlin, 1937. Zbl63.0458.05MR344979JFM63.0458.05
  17. [17] C.E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, 1960. Zbl0095.09702MR115101
  18. [18] T. Sunada, On bounded Reinhardt domains, Proc. Japan Acad., 50 (1974), 119-123. Zbl0302.32028MR414915
  19. [19] E. Thorp - R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc., 18 (1967), pp. 640-646. Zbl0185.20102MR214794
  20. [20] P. Thullen, Zu den Abbildungen durch analytische Functionen mehrerer komplexer Veränderlichen. Die Invarianz des Mittelpunktes von Kreiskörpern, Math. Ann., 104 (1931), pp. 244-259; 373-376. Zbl0001.02303MR1512662
  21. [21] E. Vesentini, Maximum theorems for spectra, Essays on topology and related topics, Memoires dédiés à Georges DeRham, Springer-Verlag, 1970, pp. 111-117. Zbl0195.41903MR271731
  22. [22] E. Vesentini, Maximum theorems for vector valued holomorphic functions, Rend. Sem. Mat. Fis. Milano, 40 (1970), pp. 24-55. Zbl0221.58007MR287299
  23. [23] E. Vesentini, Invariant metrics on convex cones, Ann. Scuola Norm. Sup. Pisa, (4) 3 (1976), pp. 671-696. Zbl0357.46011MR433228
  24. [24] J.-P. Vigué, Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe. Application aux domaines bornés symétriques, Ann. Sci. Ec. Norm. Sup., (4) 9 (1976), pp. 203-282. Zbl0333.32027MR430335
  25. [25] J.G. Wendel, On isometric isomorphism of group algebras, Pacific J. Math., 1 (1951), pp. 305-311. Zbl0043.03102MR49910
  26. [26] K. Yoshida, Functional analysis, Springer-Verlag, 1968. 

Citations in EuDML Documents

top
  1. Carlo Petronio, Holomorphic automorphism groups in certain compact operator spaces
  2. László L. Stachó, On the existence of fixed points of holomorphic automorphisms
  3. Edoardo Vesentini, Non-subharmonicity of the Hausdorff distance
  4. Edoardo Vesentini, Non-subharmonicity of the Hausdorff distance
  5. Chiara De Fabritiis, Fixed points for automorphisms in Cartan domains of type IV
  6. Edoardo Vesentini, Complex geodesics
  7. Marco Abate, Boundary behaviour of invariant distances and complex geodesics
  8. Marco Abate, Boundary behaviour of invariant distances and complex geodesics
  9. Graziano Gentili, On non-Uniqueness of Complex Geodesies in Convex Bounded Domains
  10. Graziano Gentili, On non-Uniqueness of Complex Geodesies in Convex Bounded Domains

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.