Variations on a theme of Carathéodory
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)
- Volume: 6, Issue: 1, page 39-68
- ISSN: 0391-173X
Access Full Article
topHow to cite
topVesentini, Edoardo. "Variations on a theme of Carathéodory." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (1979): 39-68. <http://eudml.org/doc/83807>.
@article{Vesentini1979,
author = {Vesentini, Edoardo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {pseudo-distances; Caratheodory distance; logarithmically plurisubharmonic function; holomorphic automorphisms; bounded Reinhardt domains; Kobayashi distances; Schwarz lemma; Banach algebras; Hermitian involution},
language = {eng},
number = {1},
pages = {39-68},
publisher = {Scuola normale superiore},
title = {Variations on a theme of Carathéodory},
url = {http://eudml.org/doc/83807},
volume = {6},
year = {1979},
}
TY - JOUR
AU - Vesentini, Edoardo
TI - Variations on a theme of Carathéodory
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 1
SP - 39
EP - 68
LA - eng
KW - pseudo-distances; Caratheodory distance; logarithmically plurisubharmonic function; holomorphic automorphisms; bounded Reinhardt domains; Kobayashi distances; Schwarz lemma; Banach algebras; Hermitian involution
UR - http://eudml.org/doc/83807
ER -
References
top- [1] A. Andreotti - R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces, Trans. Amer. Math. Soc., 111 (1964), pp. 345-366. Zbl0134.06001MR159961
- [2] M. Brelot, Elements de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1965. Zbl0084.30903MR106366
- [3] J.W.M. Ford, A square root lemma for Banach star-algebras, J. London Math. Soc., 42 (1967), pp. 521-522. Zbl0145.38702MR215107
- [4] L.A. Harris, Schwarz's lemma in normed linear spaces, Proc. Nat. Acad. Sci. USA, 62 (1969), pp. 1014-1017. Zbl0199.19401MR275179
- [5] L.A. Harris, Banach algebras with involution and Möbius transformations, J. Functional Analysis, 11 (1972), pp. 1-16. Zbl0239.46058MR352994
- [6] E. Hille - R.S. Phillips, Functional analysis and semigroups, Rev. Edition, Colloquium Publications, Vol. 31, Amer. Math. Soc., Providence, R. I., 1957. Zbl0078.10004MR89373
- [7] H. Horstmann, Caratheodorysche Metrik und Regularitätshullen, Math. Ann., 108 (1933), pp. 208-217. Zbl0006.21302MR1512845JFM59.0341.02
- [8] W. Kaup - H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc., 58 (1976), pp. 129-133. Zbl0337.32012MR422704
- [9] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970. Zbl0207.37902MR277770
- [10] N. Kritikos, Über analytische Abbildungen des Gebietes |x| + |y| < 1 auf sich, Bull. Soc. Math. Grèce, 8 (1927), pp. 42-45. Zbl53.0315.03JFM53.0315.03
- [11] N. Kritikos, Über analytische Abbildungen einer Klasse von vier dimensionalen Gebieten, Math. Ann., 99 (1928), pp. 321-341. MR1512453JFM54.0373.02
- [12] R. Narasimhan, The Levi problem for complex spaces. II, Math. Ann., 146 (1962), pp. 195-216. Zbl0131.30801MR182747
- [13] P. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North Holland, Amsterdam, 1937. Zbl0251.46049
- [14] V. Pták, On the spectral radius in Banach algebras with involution, Bull. London Math. Soc., 2 (1970), pp. 327-334. Zbl0209.44403MR275175
- [15] V. Pták, Banach algebras with involution, Manuscripta Math., 6 (1972), pp. 245-290. Zbl0229.46054MR296705
- [16] T. Radó, Subharmonic functions, Springer-Verlag, Berlin, 1937. Zbl63.0458.05MR344979JFM63.0458.05
- [17] C.E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, 1960. Zbl0095.09702MR115101
- [18] T. Sunada, On bounded Reinhardt domains, Proc. Japan Acad., 50 (1974), 119-123. Zbl0302.32028MR414915
- [19] E. Thorp - R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc., 18 (1967), pp. 640-646. Zbl0185.20102MR214794
- [20] P. Thullen, Zu den Abbildungen durch analytische Functionen mehrerer komplexer Veränderlichen. Die Invarianz des Mittelpunktes von Kreiskörpern, Math. Ann., 104 (1931), pp. 244-259; 373-376. Zbl0001.02303MR1512662
- [21] E. Vesentini, Maximum theorems for spectra, Essays on topology and related topics, Memoires dédiés à Georges DeRham, Springer-Verlag, 1970, pp. 111-117. Zbl0195.41903MR271731
- [22] E. Vesentini, Maximum theorems for vector valued holomorphic functions, Rend. Sem. Mat. Fis. Milano, 40 (1970), pp. 24-55. Zbl0221.58007MR287299
- [23] E. Vesentini, Invariant metrics on convex cones, Ann. Scuola Norm. Sup. Pisa, (4) 3 (1976), pp. 671-696. Zbl0357.46011MR433228
- [24] J.-P. Vigué, Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe. Application aux domaines bornés symétriques, Ann. Sci. Ec. Norm. Sup., (4) 9 (1976), pp. 203-282. Zbl0333.32027MR430335
- [25] J.G. Wendel, On isometric isomorphism of group algebras, Pacific J. Math., 1 (1951), pp. 305-311. Zbl0043.03102MR49910
- [26] K. Yoshida, Functional analysis, Springer-Verlag, 1968.
Citations in EuDML Documents
top- Carlo Petronio, Holomorphic automorphism groups in certain compact operator spaces
- László L. Stachó, On the existence of fixed points of holomorphic automorphisms
- Edoardo Vesentini, Non-subharmonicity of the Hausdorff distance
- Edoardo Vesentini, Non-subharmonicity of the Hausdorff distance
- Chiara De Fabritiis, Fixed points for automorphisms in Cartan domains of type IV
- Edoardo Vesentini, Complex geodesics
- Marco Abate, Boundary behaviour of invariant distances and complex geodesics
- Marco Abate, Boundary behaviour of invariant distances and complex geodesics
- Graziano Gentili, On non-Uniqueness of Complex Geodesies in Convex Bounded Domains
- Graziano Gentili, On non-Uniqueness of Complex Geodesies in Convex Bounded Domains
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.