Extension of CR functions to «wedge type» domains
Andrea D'Agnolo; Piero D'Ancona; Giuseppe Zampieri
- Volume: 2, Issue: 1, page 35-42
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topD'Agnolo, Andrea, D'Ancona, Piero, and Zampieri, Giuseppe. "Extension of CR functions to «wedge type» domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.1 (1991): 35-42. <http://eudml.org/doc/244287>.
@article{DAgnolo1991,
abstract = {Let \( X \) be a complex manifold, \( S \) a generic submanifold of \( X^\{\mathbb\{R\}\} \), the real underlying manifold to \( X \). Let \( \Omega \) be an open subset of \( S \) with \( \partial \Omega \) analytic, \( Y \) a complexification of \( S \). We first recall the notion of \( \Omega \)-tuboid of \( X \) and of \( Y \) and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for \( \bar\{\partial\}\_\{b\} \) to the extendability of \( CR \) functions on \( \Omega \) to \( \Omega \)-tuboids of \( X \). Next, if \( X \) has complex dimension 2, we give results on extension for some classes of hypersurfaces (which correspond to some \( \bar\{\partial\}\_\{b\} \) whose Poisson bracket between real and imaginary part is \( \ge 0 \)). The main tools of the proof are the complex \( \mathcal\{C\}\_\{\Omega \mid Y\} \) by Schapira and the theorem of \( \Omega \)-regularity of Schapira-Zampieri and Uchida-Zampieri.},
author = {D'Agnolo, Andrea, D'Ancona, Piero, Zampieri, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Partial differential equations on manifolds; Several complex variables and analytic spaces; Boundary value problems; regularity at the boundary; extendability of -functions; hyperfunctions},
language = {eng},
month = {3},
number = {1},
pages = {35-42},
publisher = {Accademia Nazionale dei Lincei},
title = {Extension of CR functions to «wedge type» domains},
url = {http://eudml.org/doc/244287},
volume = {2},
year = {1991},
}
TY - JOUR
AU - D'Agnolo, Andrea
AU - D'Ancona, Piero
AU - Zampieri, Giuseppe
TI - Extension of CR functions to «wedge type» domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/3//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 1
SP - 35
EP - 42
AB - Let \( X \) be a complex manifold, \( S \) a generic submanifold of \( X^{\mathbb{R}} \), the real underlying manifold to \( X \). Let \( \Omega \) be an open subset of \( S \) with \( \partial \Omega \) analytic, \( Y \) a complexification of \( S \). We first recall the notion of \( \Omega \)-tuboid of \( X \) and of \( Y \) and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for \( \bar{\partial}_{b} \) to the extendability of \( CR \) functions on \( \Omega \) to \( \Omega \)-tuboids of \( X \). Next, if \( X \) has complex dimension 2, we give results on extension for some classes of hypersurfaces (which correspond to some \( \bar{\partial}_{b} \) whose Poisson bracket between real and imaginary part is \( \ge 0 \)). The main tools of the proof are the complex \( \mathcal{C}_{\Omega \mid Y} \) by Schapira and the theorem of \( \Omega \)-regularity of Schapira-Zampieri and Uchida-Zampieri.
LA - eng
KW - Partial differential equations on manifolds; Several complex variables and analytic spaces; Boundary value problems; regularity at the boundary; extendability of -functions; hyperfunctions
UR - http://eudml.org/doc/244287
ER -
References
top- BAOUENDI, M. S. - PREISS ROTHSCHILD, L., Normal forms for generic manifolds and holomorphic extension of CR functions. J. Differential Geometry, 25, 1987, 431-467. Zbl0629.32016MR882830
- BAOUENDI, M. S. - TREVES, F., A property of the functions and distribution annihilated by a locally integrable system of complex vector fields. Annals of Mathematics, 113, 1981, 387-421. Zbl0491.35036MR607899DOI10.2307/2006990
- BAOUENDI, M. S. - TREVES, F., About the holomorphic extension of CR functions on real hypersurfaces in complex space. Duke Math. J., 51, 1, 1984, 77-107. Zbl0564.32011MR744289DOI10.1215/S0012-7094-84-05105-6
- KASHIWARA, M. - SCHAPIRA, P., Microlocal study of sheaves. Astérisque, 128, 1985. Zbl0589.32019MR794557
- POLKING, J. C. - WELLS, R. O., Hyperfunction boundary values and a generalized Bochner-Hartogs theorem. Proc. Symp. in Pure Math., 30, 1977, 187-193. Zbl0358.32014MR442280
- SCHAPIRA, P., Front d'onde analytique au bord. I. C. R. Acad. Sci. Paris Sér. I Math., 302 10, 1986; IISem. E.D.P. École Polytechnique Exp., 13, 1986. Zbl0592.58052MR838395
- SCHAPIRA, P. - TREPREAU, J. M., Microlocal pseudoconvexity and «edge of the wedge» theorem. Duke Math. J., 61 , n. 1, 1990, 105-118. Zbl0722.32012MR1068381DOI10.1215/S0012-7094-90-06105-8
- SCHAPIRA, P. - ZAMPIERI, G., Microfunctions at the boundary and mild microfunctions. Publ. RIMS, Kyoto Univ., 24, 1988, 495-503. Zbl0702.35004MR976757DOI10.2977/prims/1195174864
- SCHAPIRA, P. - ZAMPIERI, G., Regularity at the boundary for systems of microdifferential equations. Pitman Res. Notes in Math., 158, 1987, 186-201. Zbl0749.58058MR922089
- TREPREAU, J. M., Prolongement unilateral des fonctions CR. Séminaire Bony-Sjöstrand-Meyer 1984-1985, Exposé XXII. Zbl0609.32012MR819788
- UCHIDA, M. - ZAMPIERI, G., Second microfunctions at the boundary. Publ. RIMS, Kyoto Univ., 26, 1990, 205-219. Zbl0712.35007MR1047414DOI10.2977/prims/1195171081
- ZAMPIERI, G., A vanishing theorem for microfunctions at the boundary. To appear.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.