Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains
Jean-Pierre Conze; Albert Raugi
ESAIM: Probability and Statistics (2003)
- Volume: 7, page 115-146
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topConze, Jean-Pierre, and Raugi, Albert. "Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains." ESAIM: Probability and Statistics 7 (2003): 115-146. <http://eudml.org/doc/245526>.
@article{Conze2003,
abstract = {We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet” condition and apply it to a class of transition operators. This gives the convergence of the series $\sum _\{k \ge 0\} k^r P^k f$, $r \in \mathbb \{N\}$, under some regularity assumptions and implies the central limit theorem with a rate in $n^\{- \frac\{1\}\{2\} \}$ for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.},
author = {Conze, Jean-Pierre, Raugi, Albert},
journal = {ESAIM: Probability and Statistics},
keywords = {transfer operator; convergence of iterates; Markov chains; rate in the TCL for dynamical systems; Borel-Cantelli property; non uniformly hyperbolic map},
language = {eng},
pages = {115-146},
publisher = {EDP-Sciences},
title = {Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains},
url = {http://eudml.org/doc/245526},
volume = {7},
year = {2003},
}
TY - JOUR
AU - Conze, Jean-Pierre
AU - Raugi, Albert
TI - Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains
JO - ESAIM: Probability and Statistics
PY - 2003
PB - EDP-Sciences
VL - 7
SP - 115
EP - 146
AB - We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet” condition and apply it to a class of transition operators. This gives the convergence of the series $\sum _{k \ge 0} k^r P^k f$, $r \in \mathbb {N}$, under some regularity assumptions and implies the central limit theorem with a rate in $n^{- \frac{1}{2} }$ for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.
LA - eng
KW - transfer operator; convergence of iterates; Markov chains; rate in the TCL for dynamical systems; Borel-Cantelli property; non uniformly hyperbolic map
UR - http://eudml.org/doc/245526
ER -
References
top- [1] V. Baladi, Positive Transfer Operators and Decay of Correlations. World Scientific, Adv. Ser. Nonlinear Dynam. 16 (2000). Zbl1012.37015MR1793194
- [2] R. Bowen, Equilibrium states and the ergodic theory of Anosov Diffeomorphisms. Springer-Verlag, Lectures Notes 470 (1975). Zbl0308.28010MR442989
- [3] B.M. Brown, Martingale central limit theorem. Ann. Math. Statist. 42 (1971) 59-66. Zbl0218.60048MR290428
- [4] N. Chernov and D. Kleinbock, Dynamical Borel–Cantelli lemmas for Gibbs measures. Isreal J. Math. 122 (2001) 1-27. Zbl0997.37002
- [5] J.-P. Conze and A. Raugi, Fonctions harmoniques pour un opérateur de transition et applications. Bull. Soc. Math. France 118 (1990) 273-310. Zbl0725.60026MR1078079
- [6] J.-P. Conze and A. Raugi, Convergence des potentiels pour un opérateur de transfert, applications aux systèmes dynamiques et aux chaînes de Markov. Séminaires de Rennes (1998) 52. Zbl0983.60071MR1794947
- [7] M.I. Gordin, On the central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR, Soviet Math. Dokl. 10 (1969) 1174-1176. Zbl0212.50005MR251785
- [8] M.I. Gordin and B.A. Lifvsic, Central limit theorem for stationary Markov processes. Dokl. Akad. Nauk SSSR 239 (1978) 766-767. Zbl0395.60057MR501277
- [9] S. Gouëzel, Sharp polynomial estimates for the decay of correlations. Preprint (2002). Zbl1070.37003MR2041223
- [10] P. Hall and C.C. Heyde, Martingale limit theory and its applications. Academic Press, New York (1980). Zbl0462.60045MR624435
- [11] H. Hennion and L. Hervé, Limit theorem for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-compactness. Springer-Verlag, Lectures Notes 1766 (2001). Zbl0983.60005MR1862393
- [12] H. Hu, Decay of correlations for piecwise smooth maps with indifferent fixed points. Preprint. Zbl1071.37026
- [13] C. Jan, Vitesse de convergence dans le TCL pour certaines chaînes de Markov et certains systèmes dynamiques, Preprint. Université de Rennes 1 (2000). MR1784921
- [14] D.Y. Kleinbock and G.A. Margulis, Logarithm laws for flows on homogeneous spaces. Invent. Math. 138 (1999) 451-494. Zbl0934.22016MR1719827
- [15] A. Kondah, V. Maume and B. Schmitt, Vitesse de convergence vers l’état d’équilibre pour des dynamiques markoviennes non höldériennes. Ann. Inst. H. Poincaré 33 (1997) 675-695. Zbl0913.60046
- [16] C. Liverani, Decay of correlations. Ann. Math. 142 (1995) 239-301. Zbl0871.58059MR1343323
- [17] C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19 (1999) 671-685. Zbl0988.37035MR1695915
- [18] W. Philipp, Some metrical theorems in number theory. Pacific J. Math. 20 (1967) 109-127. Zbl0144.04201MR205930
- [19] M. Pollicott, Rates of mixing for potentials of summable variation. Trans. Amer. Math. Soc. 352 (2000) 843-853. Zbl0986.37005MR1621698
- [20] M. Pollicott and M. Yuri, Statistical properties of maps with indifferent periodic points. Comm. Math. Phys. 217 (2001) 503-520. Zbl0996.37030MR1822105
- [21] A. Raugi, Théorie spectrale d’un opérateur de transition sur un espace métrique compact. Ann. Inst. H. Poincaré 28 (1992) 281-309. Zbl0752.60054
- [22] E. Rio, Sur le théorème de Berry–Esseen pour les suites faiblement dépendantes. J. Probab. Theory Related Fields 104 (1996) 255-282. Zbl0838.60017
- [23] O. Sarig, Subexponential decay of decorrelation. Preprint (2001). Zbl1042.37005
- [24] Ya.G. Sinai, Gibbs measures in ergodic theory. Russian Math. Surveys 166 (1972) 21-64. Zbl0246.28008MR399421
- [25] P. Walters, Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978) 121-153. Zbl0375.28009MR466493
- [26] L.-S. Young, Recurrence times and rates of mixing. Israel J. Math. 110 (1999) 153-188. Zbl0983.37005MR1750438
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.