Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale
Bernard Bonnard; Emmanuel Trélat
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 7, page 179-222
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Baumann et H.J. Oberle, Numerical computation of optimal trajectories for coplanar aeroassisted orbital transfer. J. Optim. Theory Appl. 107 (2000) 457-479. Zbl1168.49310MR1807905
- [2] O. Bolza, Calculus of variations. Chelsea (1973).
- [3] F. Bonnans et G. Launay, Large scale direct optimal control applied to the re-entry problem. J. Guidance, Control and Dynamics 21 (1998) 996-1000.
- [4] B. Bonnard et G. Launay, Time minimal control of batch reactors. ESAIM : COCV 3 (1998) 407-467. Zbl0914.93043MR1658682
- [5] B. Bonnard et I. Kupka, Théorie des singularités de l’application entrée/sortie et optimalité des singulières. Forum Math. 5 (1993) 111-159. Zbl0779.49025
- [6] A. Bryson et Y.C. Ho, Applied optimal control. Hemisphere Pub. Corporation (1975). MR446628
- [7] J.B. Caillau et J. Noailles, Coplanar control of a satellite around the Earth. ESAIM : COCV 6 (2001) 239-258. Zbl1036.70014MR1816074
- [8] CNES, Mécanique spatiale. Cepadues Eds. (1993).
- [9] J.M. Coron et L. Praly, Guidage en rentrée atmosphérique, Rapport 415. CNES (2000).
- [10] I. Ekeland, Discontinuité des champs de vecteurs extrémaux en calcul des variations. Publ. Math. IHES 47 (1977) 5-32. Zbl0447.49015
- [11] A.D. Ioffe et V.M. Tikhomirov, Theory of extremal problems. North Holland (1979). Zbl0407.90051MR528295
- [12] P.H. Jacobson et al., New necessary conditions of optimality for control problems with state-variable inequality constraints. J. Math. Anal. 35 (1971) 255-284. Zbl0188.47203MR284905
- [13] A.J. Krener et H. Schättler, The structure of small time reachable sets in small dimensions. SIAM J. Control Optim. 27 (1989) 120-147. Zbl0669.49020MR980227
- [14] I. Kupka, Geometric theory of extremals in optimal control problems. Trans. Amer. Math. Soc. 299 (1987) 225-243. Zbl0606.49016MR869409
- [15] H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim. 15 (1977) 345-362. Zbl0358.49008MR464007
- [16] A. Miele, Recent advances in the optimization and guidance of aeroassisted orbital transfers. Acta Astronautica 38 (1996) 747-768.
- [17] H.J. Pesch, A practical guide to the solution of real-life optimal control problems. Control Cybernet. 23 (1994). Zbl0811.49029MR1284506
- [18] V. Pontryagin et al., Méthodes mathématiques des processus optimaux. Eds. Mir (1974).
- [19] H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions. SIAM J. Control Optim. 26 (1988) 899-918. Zbl0656.49007MR948651
- [20] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane : The non singular case. SIAM J. Control Optim. 25 (1987) 856-905. Zbl0664.93034MR877071