Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale

Bernard Bonnard; Emmanuel Trélat

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 7, page 179-222
  • ISSN: 1292-8119

Abstract

top
The aim of this article is to make some geometric remarks and some preliminary calculations in order to construct the optimal atmospheric arc of a spatial shuttle (problem of reentry on Earth or Mars Sample Return project). The system describing the trajectories is in dimension 6, the control is the bank angle and the cost is the total thermal flux. Moreover there are state constraints (thermal flux, normal acceleration and dynamic pressure). Our study is mainly geometric and is founded on the evaluation of the accessibility set taking into account the state constraints. We make an analysis of the extremals of the Minimum Principle in the non-constrained case, and give a version of the Minimum Principle adapted to deal with the state constraints.

How to cite

top

Bonnard, Bernard, and Trélat, Emmanuel. "Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 179-222. <http://eudml.org/doc/245954>.

@article{Bonnard2002,
abstract = {L’objectif de ce travail est de faire quelques remarques géométriques et des calculs préliminaires pour construire l’arc atmosphérique optimal d’une navette spatiale (problème de rentrée sur Terre ou programme d’exploration de Mars). Le système décrivant les trajectoires est de dimension 6, le contrôle est l’angle de gîte cinématique et le coût est l’intégrale du flux thermique. Par ailleurs il y a des contraintes sur l’état (flux thermique, accélération normale et pression dynamique). Notre étude est essentiellement géométrique et fondée sur une évaluation de l’ensemble des états accessibles en tenant compte des contraintes sur l’état. On esquisse une analyse des extrémales du Principe du Minimum dans le cas non contraint et l’on cite un Principe du Minimum adapté à analyser le problème avec contraintes sur l’état.},
author = {Bonnard, Bernard, Trélat, Emmanuel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {contrôle optimal avec contraintes sur l’état; principes du minimum; mécanique céleste; arc atmosphérique; optimal control with state constraints; minimum principle; celestial mechanics; atmospheric arc},
language = {fre},
pages = {179-222},
publisher = {EDP-Sciences},
title = {Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale},
url = {http://eudml.org/doc/245954},
volume = {7},
year = {2002},
}

TY - JOUR
AU - Bonnard, Bernard
AU - Trélat, Emmanuel
TI - Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 179
EP - 222
AB - L’objectif de ce travail est de faire quelques remarques géométriques et des calculs préliminaires pour construire l’arc atmosphérique optimal d’une navette spatiale (problème de rentrée sur Terre ou programme d’exploration de Mars). Le système décrivant les trajectoires est de dimension 6, le contrôle est l’angle de gîte cinématique et le coût est l’intégrale du flux thermique. Par ailleurs il y a des contraintes sur l’état (flux thermique, accélération normale et pression dynamique). Notre étude est essentiellement géométrique et fondée sur une évaluation de l’ensemble des états accessibles en tenant compte des contraintes sur l’état. On esquisse une analyse des extrémales du Principe du Minimum dans le cas non contraint et l’on cite un Principe du Minimum adapté à analyser le problème avec contraintes sur l’état.
LA - fre
KW - contrôle optimal avec contraintes sur l’état; principes du minimum; mécanique céleste; arc atmosphérique; optimal control with state constraints; minimum principle; celestial mechanics; atmospheric arc
UR - http://eudml.org/doc/245954
ER -

References

top
  1. [1] H. Baumann et H.J. Oberle, Numerical computation of optimal trajectories for coplanar aeroassisted orbital transfer. J. Optim. Theory Appl. 107 (2000) 457-479. Zbl1168.49310MR1807905
  2. [2] O. Bolza, Calculus of variations. Chelsea (1973). 
  3. [3] F. Bonnans et G. Launay, Large scale direct optimal control applied to the re-entry problem. J. Guidance, Control and Dynamics 21 (1998) 996-1000. 
  4. [4] B. Bonnard et G. Launay, Time minimal control of batch reactors. ESAIM : COCV 3 (1998) 407-467. Zbl0914.93043MR1658682
  5. [5] B. Bonnard et I. Kupka, Théorie des singularités de l’application entrée/sortie et optimalité des singulières. Forum Math. 5 (1993) 111-159. Zbl0779.49025
  6. [6] A. Bryson et Y.C. Ho, Applied optimal control. Hemisphere Pub. Corporation (1975). MR446628
  7. [7] J.B. Caillau et J. Noailles, Coplanar control of a satellite around the Earth. ESAIM : COCV 6 (2001) 239-258. Zbl1036.70014MR1816074
  8. [8] CNES, Mécanique spatiale. Cepadues Eds. (1993). 
  9. [9] J.M. Coron et L. Praly, Guidage en rentrée atmosphérique, Rapport 415. CNES (2000). 
  10. [10] I. Ekeland, Discontinuité des champs de vecteurs extrémaux en calcul des variations. Publ. Math. IHES 47 (1977) 5-32. Zbl0447.49015
  11. [11] A.D. Ioffe et V.M. Tikhomirov, Theory of extremal problems. North Holland (1979). Zbl0407.90051MR528295
  12. [12] P.H. Jacobson et al., New necessary conditions of optimality for control problems with state-variable inequality constraints. J. Math. Anal. 35 (1971) 255-284. Zbl0188.47203MR284905
  13. [13] A.J. Krener et H. Schättler, The structure of small time reachable sets in small dimensions. SIAM J. Control Optim. 27 (1989) 120-147. Zbl0669.49020MR980227
  14. [14] I. Kupka, Geometric theory of extremals in optimal control problems. Trans. Amer. Math. Soc. 299 (1987) 225-243. Zbl0606.49016MR869409
  15. [15] H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim. 15 (1977) 345-362. Zbl0358.49008MR464007
  16. [16] A. Miele, Recent advances in the optimization and guidance of aeroassisted orbital transfers. Acta Astronautica 38 (1996) 747-768. 
  17. [17] H.J. Pesch, A practical guide to the solution of real-life optimal control problems. Control Cybernet. 23 (1994). Zbl0811.49029MR1284506
  18. [18] V. Pontryagin et al., Méthodes mathématiques des processus optimaux. Eds. Mir (1974). 
  19. [19] H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions. SIAM J. Control Optim. 26 (1988) 899-918. Zbl0656.49007MR948651
  20. [20] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane : The C non singular case. SIAM J. Control Optim. 25 (1987) 856-905. Zbl0664.93034MR877071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.