On the structure of linear recurrent error-control codes

Michel Fliess

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 703-713
  • ISSN: 1292-8119

Abstract

top
We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

How to cite

top

Fliess, Michel. "On the structure of linear recurrent error-control codes." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 703-713. <http://eudml.org/doc/246026>.

@article{Fliess2002,
abstract = {We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.},
author = {Fliess, Michel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {convolutional codes; linear recurrent codes; block codes; transducers; encoders; feedback decoding; linear systems; controllability; observability; input-output inversion; modules},
language = {eng},
pages = {703-713},
publisher = {EDP-Sciences},
title = {On the structure of linear recurrent error-control codes},
url = {http://eudml.org/doc/246026},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Fliess, Michel
TI - On the structure of linear recurrent error-control codes
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 703
EP - 713
AB - We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.
LA - eng
KW - convolutional codes; linear recurrent codes; block codes; transducers; encoders; feedback decoding; linear systems; controllability; observability; input-output inversion; modules
UR - http://eudml.org/doc/246026
ER -

References

top
  1. [1] C. Berrou and A. Glavieux, Near-optimum error-correcting coding and decoding: Turbo-codes. IEEE Trans. Communicat. 44 (1996) 1261-1271. 
  2. [2] R.E. Blahut, Theory and Practice of Error Control Codes. Addison-Wesley (1983). Zbl0569.94012MR698946
  3. [3] N. Bourbaki, Algèbre, Chap. 2. Hermann (1970). MR274237
  4. [4] G. Cohen, J.-L. Dornstetter and P. Godlewski, Codes correcteurs d’erreurs. Masson (1992). 
  5. [5] R.M. Cohn, Difference Algebra. Interscience (1965). Zbl0127.26402MR205987
  6. [6] A. Dholakia, Introduction to Convolutional Codes with Applications. Kluwer (1994). Zbl0826.94001
  7. [7] F. Fagnani and S. Zampieri, System-theoretic properties of convolutional codes over rings. IEEE Trans. Inform. Theory 47 (2001) 2256-2274. Zbl1028.94033MR1873201
  8. [8] M. Fliess, Automatique en temps discret et algèbre aux différences. Forum Math. 2 (1990) 213-232. Zbl0706.93039MR1050406
  9. [9] M. Fliess, Some basic structural properties of generalized linear systems. Systems Control Lett. 15 (1990) 391-396. Zbl0727.93024MR1084580
  10. [10] M. Fliess, A remark on Willems’ trajectory characterization of linear controllability. Systems Control Lett. 19 (1992) 43-45. Zbl0765.93003
  11. [11] M. Fliess, Reversible linear and nonlinear discrete-time dynamics. IEEE Trans. Automat. Control 37 (1992) 1144-1153. Zbl0764.93058MR1178584
  12. [12] M. Fliess, Une interprétation algébrique de la transformation de Laplace et des matrices de transfert. Linear Algebra Appl. 203-204 (1994) 429-442. Zbl0802.93010MR1275520
  13. [13] M. Fliess, Variations sur la notion de contrôlabilité, in Journée Soc. Math. France. Paris (2000) 47-86. Zbl0992.93002MR1799559
  14. [14] M. Fliess and H. Bourlès, Discussing some examples of linear system interconnections. Systems Control Lett. 27 (1996) 1-7. Zbl0877.93064MR1375906
  15. [15] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: Introductory theory and applications. Internat. J. Control 61 (1995) 1327-1361. Zbl0838.93022MR1613557
  16. [16] M. Fliess and R. Marquez, Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. Internat. J. Control 73 (2000) 606-623. Zbl1006.93508MR1768024
  17. [17] M. Fliess and R. Marquez, Une approche intrinsèque de la commande prédictive linéaire discrète. APII J. Europ. Syst. Automat. 35 (2001) 127-147. 
  18. [18] M. Fliess, R. Marquez, E. Delaleau and H. Sira–Ramírez, Correcteurs proportionnels-intégraux généralisés. ESAIM: COCV 7 (2002) 23-41. Zbl1037.93040
  19. [19] M. Fliess, R. Marquez and H. Mounier, An extension of predictive control, PID regulators and Smith predictors to some linear delay systems. Internat. J. Control (to appear). Zbl1021.93015MR1916231
  20. [20] M. Fliess and H. Mounier, Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV 3 (1998) 301-314. Zbl0908.93013MR1644427
  21. [21] G.D. Forney Jr., Convolutional codes I: Algebraic structure. IEEE Trans. Inform. Theory 16 (1970) 720-738. Zbl0205.20702MR275988
  22. [22] G.D. Forney Jr., Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13 (1975) 493-520. Zbl0269.93011MR378886
  23. [23] G.D. Forney Jr., Algebraic structure of convolutional codes and algebraic system theory, in Mathematical System Theory – The Influence of R.E. Kalman, edited by A.C. Antoulas. Springer (1991) 527-557. Zbl0751.94011
  24. [24] G.D. Forney Jr. and M.D. Trott, The dynamics of group codes: State-space, trellis diagrams and canonical encoders. IEEE Trans. Inform. Theory 39 (1993) 1491-1513. Zbl0801.94015MR1281706
  25. [25] G.D. Forney Jr., B. Marcus, N.T. Sindhushayana and M. Trott, A multilingual dictionary: System theory, coding theory, symbolic dynamics and automata theory, in Different Aspects of Coding Theory. Proc. Symp. Appl. Math. 50; Amer. Math. Soc. (1995) 109-138. Zbl0845.58024MR1368638
  26. [26] R. Johannesson and K. Sh. Zigangirov, Fundamentals of Convolutional Coding. IEEE Press (1999). Zbl0964.94024MR1768537
  27. [27] T. Kailath, Linear Systems. Prentice-Hall (1979). Zbl0454.93001MR569473
  28. [28] E.W. Kamen, P.P. Khargonekar and K.R. Poola, A transfer-function approach to linear time-varying discrete-time systems. SIAM J. Control Optim. 23 (1985) 550-565. Zbl0626.93039MR791887
  29. [29] T.Y. Lam, Lectures on Rings and Modules. Springer (1999). MR1653294
  30. [30] S. Lin and D.J. Costello Jr., Error Control Coding: Fundamentals and Applications. Prentice-Hall (1983). Zbl1310.94181
  31. [31] J.H. van Lint, Introduction to Coding Theory, 3 rd Edition. Springer (1999). Zbl0936.94014MR1664228
  32. [32] H.-A. Loeliger, G.D. Forney Jr., T. Mittelholzer and M.D. Trott, Minimality and observability of group systems. Linear Algebra Appl. 205-206 (1994) 937-963. Zbl0813.93046MR1276847
  33. [33] J.L. Massey and M.K. Sain, Codes, automata and contnuous systems: Explicit interconnections. IEEE Trans. Automat. Control 12 (1967) 644-650. 
  34. [34] R.J. McEliece, The algebraic theory of convolutional codes, in Handbook of Coding Theory, Vol. 1, edited by V. Pless and W.C. Huffman. Elsevier (1998) 1065-1138. Zbl0967.94020MR1667948
  35. [35] J.C. McConnel and J.C. Robson, Noncommutative Noetherian Rings. Wiley (1987). Zbl0644.16008MR934572
  36. [36] H. Mounier, P. Rouchon and J. Rudolph, Some examples of linear systems with delays. APII J. Europ. Syst. Automat. 31 (1997) 911-925. 
  37. [37] P. Piret, Convolutional Codes, an Algebraic Approach. MIT Press (1988). Zbl0986.94510MR959540
  38. [38] J. Rosenthal, Connections between linear systems and convolutional codes, in Codes, Systems and Graphical Models, edited by B. Marcus and J. Rosenthal. Springer (2000) 39-66. Zbl0993.94559MR1861952
  39. [39] J. Rosenthal, J.M. Schumacher and E.V. York, On behaviors and convolutional codes. IEEE Trans. Informat. Theory 42 (1996) 1881-1891. Zbl0876.94042MR1465746
  40. [40] J. Rosenthal and E.V. York, BCH convolutional codes. IEEE Trans. Inform. Theory 45 (1999) 1833-1844. Zbl0958.94035MR1720637
  41. [41] J. Rotman, An Introduction to Homological Algebra. Academic Press (1979). Zbl0441.18018MR538169
  42. [42] A.J. Viterbi and J.K. Omura, Principles of Digital Communication and Coding. McGraw-Hill (1979). Zbl0495.94002
  43. [43] L. Weiss, Controllability, realization and stability of discrete-time systems. SIAM J. Control 10 (1972) 230-251. Zbl0238.93007MR392092
  44. [44] J.C. Willems, Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991) 259-294. Zbl0737.93004MR1092818
  45. [45] G. Zémor, Cours de cryptographie. Cassini (2000). Zbl0978.94040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.