Semigroup formulation of Rothe's method: application to parabolic problems

Marián Slodička

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 2, page 245-260
  • ISSN: 0010-2628

Abstract

top
A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe's method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.

How to cite

top

Slodička, Marián. "Semigroup formulation of Rothe's method: application to parabolic problems." Commentationes Mathematicae Universitatis Carolinae 33.2 (1992): 245-260. <http://eudml.org/doc/247401>.

@article{Slodička1992,
abstract = {A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe's method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.},
author = {Slodička, Marián},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {error estimates; parabolic equation; backward Euler method; Banach space; abstract semilinear parabolic initial value problem; a priori error estimate; backward Euler method; Rothe method of lines},
language = {eng},
number = {2},
pages = {245-260},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Semigroup formulation of Rothe's method: application to parabolic problems},
url = {http://eudml.org/doc/247401},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Slodička, Marián
TI - Semigroup formulation of Rothe's method: application to parabolic problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 2
SP - 245
EP - 260
AB - A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe's method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.
LA - eng
KW - error estimates; parabolic equation; backward Euler method; Banach space; abstract semilinear parabolic initial value problem; a priori error estimate; backward Euler method; Rothe method of lines
UR - http://eudml.org/doc/247401
ER -

References

top
  1. Choudury G., Fully discrete Galerkin approximations of parabolic boundary-value problems with nonsmooth boundary data, Numer. Math. 57 (1990), 179-203. (1990) Zbl0671.65092MR1048311
  2. Crouzeix M., Thomée V., On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), 359-377. (1987) MR0906176
  3. Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer Verlag, Berlin-Heidelberg-New York, 1981. Zbl0663.35001MR0610244
  4. Kačur J., Method of Rothe in Evolution Equations, Teubner Texte zur Math. 80, Leipzig, 1985. MR0834176
  5. Kačur J., Application of Rothe's method to evolution Integrodifferential equations, J. reine angew. Math. 388 (1988), 73-105. (1988) Zbl0638.65098MR0944184
  6. Kačur J., On L -convergence of Rothe’s method, Comment. Math. Univ. Carolinae 30 (1989), 505-510. (1989) MR1031868
  7. Le Roux M.N., Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979), 919-931. (1979) Zbl0417.65049MR0528047
  8. Le Roux M.N., Thomée V., Numerical solution of semilinear integrodifferential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal. 26 (1989), 1291-1309. (1989) MR1025089
  9. Luskin M., Rannacher R., On the smoothing property of the Galerkin method for parabolic equations, SIAM J. Numer. Anal. 19 (1982), 93-113. (1982) Zbl0483.65064MR0646596
  10. Mingyou H., Thomée V., On the backward Euler method for parabolic equations with rough initial data, SIAM J. Numer. Anal. 19 (1982), 599-603. (1982) MR0656473
  11. Rannacher R., L -Stability Estimates and Asymptotic Error Expansion for Parabolic Finite Element Equations, preprint 589, Universität Heidelberg, Sonderforschungsbereich 123, Stochastische mathematische Modelle, 1990. MR1185533
  12. Schatz A.H., Thomée V., Wahlbin L.B., Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), 265-304. (1980) MR0562737
  13. Slodička M., Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the L p -space, Apl. Mat. 34 (1989), 439-448. (1989) MR1026508
  14. Slodička M., An investigation of convergence and error estimate of approximate solution for a quasilinear parabolic integrodifferential equation, Apl. Mat. 35 (1990), 16-27. (1990) MR1039408
  15. Slodička M., Error Estimates for Discretization in Time to Linear Homogeneous Parabolic Equations with Nonsmooth Initial data, preprint JINR E5-90-8, Dubna, 1990. 
  16. Slodička M., Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data, Comment. Math. Univ. Carolinae 32 (1991), 703-713. (1991) MR1159817
  17. Taylor A.E., Introduction to Functional Analysis, John Wiley & Sons, Inc., New York, 1958. Zbl0654.46002MR0098966
  18. Thomée V., Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Math. 1054, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1984. MR0744045
  19. Thomée V., On the Numerical Solution of Integro-Differential Equations of Parabolic Type, Inter. Ser. Numer. Math. 86, Birkhauser Verlag Basel, 1988, 477-493. MR1022978

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.