Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures
Colin J. Bushnell; Guy Henniart
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 2, page 309-347
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBushnell, Colin J., and Henniart, Guy. "Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures." Journal de théorie des nombres de Bordeaux 12.2 (2000): 309-347. <http://eudml.org/doc/248477>.
@article{Bushnell2000,
abstract = {Let $F/\mathbb \{Q\}_p$ be a finite field extension. The Langlands correspondence gives a canonical bijection between the set $\mathcal \{G\}^0_F (n)$ of equivalence classes of irreducible $n$-dimensional representations of the Weil group $\mathcal \{W\}_F$ of $F$ and the set $\mathcal \{A\}^0_F (n)$ of equivalence classes of irreducible supercuspidal representations of GL$_n(F)$. This paper is concerned with the case where $n = p^m$. In earlier work, the authors constructed an explicit bijection $\pi : \mathcal \{G\}^0_F (p^m) \rightarrow \mathcal \{A\}^0_F (p^m)$ using a non-Galois tame base change map. If this tame base change satisfies a certain conjectured automorphic Davenport-Hasse relation, and there exists a Langlands correspondence in $p$-power degree, then $\pi $ is the Langlands correspondence. This paper is concerned with the problem of showing, without assuming a priori the existence of the Langlands correspondence, that (on the Davenport-Hasse conjecture) $\pi $ preserves local constants of pairs, and so is a Langlands correspondence. The principal obstruction is the lack of knowledge of certain elementary properties of the local constant $\epsilon (\pi _1 \times \pi _2, s, \psi _F)$ for $\pi _i \in \mathcal \{A\}^0_F (p^\{m_i\})$. We state these properties as conjectures (which are certainly true, as consequences of the existence of the Langlands correspondence and analogous properties of the Langlands-Deligne local constant) and show that they imply the desired result: $\pi $ is a Langlands correspondence. In the process, we prove several new unconditional results concerning $\pi $, and give a complete account of the rationality properties of $L$-functions and local constants of pairs for GL$_n(F)$.},
author = {Bushnell, Colin J., Henniart, Guy},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {309-347},
publisher = {Université Bordeaux I},
title = {Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures},
url = {http://eudml.org/doc/248477},
volume = {12},
year = {2000},
}
TY - JOUR
AU - Bushnell, Colin J.
AU - Henniart, Guy
TI - Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 309
EP - 347
AB - Let $F/\mathbb {Q}_p$ be a finite field extension. The Langlands correspondence gives a canonical bijection between the set $\mathcal {G}^0_F (n)$ of equivalence classes of irreducible $n$-dimensional representations of the Weil group $\mathcal {W}_F$ of $F$ and the set $\mathcal {A}^0_F (n)$ of equivalence classes of irreducible supercuspidal representations of GL$_n(F)$. This paper is concerned with the case where $n = p^m$. In earlier work, the authors constructed an explicit bijection $\pi : \mathcal {G}^0_F (p^m) \rightarrow \mathcal {A}^0_F (p^m)$ using a non-Galois tame base change map. If this tame base change satisfies a certain conjectured automorphic Davenport-Hasse relation, and there exists a Langlands correspondence in $p$-power degree, then $\pi $ is the Langlands correspondence. This paper is concerned with the problem of showing, without assuming a priori the existence of the Langlands correspondence, that (on the Davenport-Hasse conjecture) $\pi $ preserves local constants of pairs, and so is a Langlands correspondence. The principal obstruction is the lack of knowledge of certain elementary properties of the local constant $\epsilon (\pi _1 \times \pi _2, s, \psi _F)$ for $\pi _i \in \mathcal {A}^0_F (p^{m_i})$. We state these properties as conjectures (which are certainly true, as consequences of the existence of the Langlands correspondence and analogous properties of the Langlands-Deligne local constant) and show that they imply the desired result: $\pi $ is a Langlands correspondence. In the process, we prove several new unconditional results concerning $\pi $, and give a complete account of the rationality properties of $L$-functions and local constants of pairs for GL$_n(F)$.
LA - eng
UR - http://eudml.org/doc/248477
ER -
References
top- [1] J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the tmce formula. Annals of Math. Studies120, Princeton University Press (1989). Zbl0682.10022MR1007299
- [2] A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Math. Studies94, Princeton University Press (1980). Zbl0443.22010MR554917
- [3] C.J. Bushnell, A. Fröhlich, Gauss sums and p-adic division algebras. Lecture Notes in Math. 987, Springer Berlin (1983). Zbl0507.12008MR701540
- [4] C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) I: simple characters. Publ. Math. IHES83 (1996), 105-233. Zbl0878.11042MR1423022
- [5] C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) II: wildly ramified supercuspidals. Astérisque254 (1999). Zbl0920.11079MR1685898
- [6] C.J. Bushnell, G. Henniart, Davenport-Hasse relations and an explicit Langlands correspondence. J. reine angew. Math.519 (2000), 171-199. Zbl1029.11063MR1739725
- [7] C.J. Bushnell, G. Henniart, alculs de facteurs epsilon de paires pour GLn sur un corps local, I. Bull. London Math. Soc.31 (1999), 534-542. Zbl0928.22016MR1703873
- [8] C.J. Bushnell, G. Henniart, Calculs de facteurs epsilon de paires pour GLn sur un corps local, II. Compositio Math.123 (2000), 89-115. Zbl0969.22006MR1784757
- [9] C.J. Bushnell, G. Henniart, P.C. Kutzko, Local Rankin-Selberg convolutions for GLn: Explicit conductor formula. J. Amer. Math. Soc.11 (1998), 703-730. Zbl0899.22017MR1606410
- [10] C.J. Bushnell, G. Henniart, P.C. Kutzko, Correspondance de Langlands locale pour GLn et conducteurs de paires. Ann. Scient. École Norm. Sup. (4) 31 (1998), 537-560. Zbl0915.11055MR1634095
- [11] C.J. Bushnell, P.C. Kutzko, The admissible dual of GL(N) via compact open subgroups. Annals of Math. Studies129, Princeton University Press (1993). Zbl0787.22016MR1204652
- [12] W. Casselman, GLn. In: Algebraic Number Fields (ed A. Frohlich), Academic PressLondon (1977), 663-704. Zbl0398.12008MR562502
- [13] P. Deligne, Les constantes des équations fonctionnelles des fonctions L. In: Modular functions of one variable II (eds W. Kuyk and J.-P. Serre). Lecture Notes in Math. 349, Springer Berlin (1973), 501-595. Zbl0271.14011MR349635
- [14] M. Harris, Supercuspidal representations in the cohomology of Drinfel'd upper half-spaces; elaboration of Carayol's program. Invent. Math.129 (1997), 75-120. Zbl0886.11029MR1464867
- [15] M. Harris, The local Langlands conjecture for GL(n) over a p-adic field, n < p. Invent. Math.134 (1998), 177-210. Zbl0921.11060MR1646587
- [16] M. Harris, R. Taylor, On the geometry and cohomology of some simple Shimura varieties. Prépublication, Institut de Math. Jussieu, November 1999. Zbl1036.11027
- [17] G. Henniart, La conjecture de Langlands locale pour GL(3). Mém. Soc. Math. France, nouvelle série 11/12 (1984). Zbl0577.12011MR743063
- [18] G. Henniart, Galois ε-factors modulo roots of unity. Invent. Math.78 (1984), 117-126. Zbl0557.12011
- [19] G. Henniart, La conjecture de Langlands locale numérique pour GL(n). Ann. Scient. École Norm. Sup. (4) 21 (1988), 497-544. Zbl0666.12013MR982332
- [20] G. Henniart, Une preuve simple des conjectures locales de Langlands pour GLn sur un corps p-adique. Invent. Math.139 (2000), 439-455. Zbl1048.11092MR1738446
- [21] G. Henniart, R. Herb, Automorphic induction for GL(n) (over local non-archimedean fields). Duke Math. J.78 (1995), 131-192. Zbl0849.11092MR1328755
- [22] H. Jacquet, I.I. Piatetskii-Shapiro, J.A. Shalika, Rankin-Selberg convolutions. Amer. J. Math.105 (1983), 367-483. Zbl0525.22018MR701565
- [23] P.C. Kutzko, The Langlands conjecture for GL2 of a local field. Ann. Math.112 (1980), 381-412. Zbl0469.22013MR592296
- [24] F. Rodier, Whittaker models for admissible representations of reductive p-adic split groups. In: Harmonic Analysis on Homogeneous Spaces (ed. C.C. Moore). Proc. Symposia Pure Math. XXZTI, Amer. Math. Soc., Providence RI (1973), 425-430. Zbl0287.22016MR354942
- [25] F. Rodier, Représentations de GL(n, k) où k est un corps p-adique. Astérisque92-93 (1982), 201-218. Zbl0506.22019MR689531
- [26] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n). Amer. J. Math.106 (1984), 67-111. Zbl0567.22008MR729755
- [27] A.J. Silberger, The Langlands Quotient Theorem for p-adic groups. Math. Ann.236 (1978), 95-104. Zbl0362.20029MR507262
- [28] A.V. Zelevinsky, Induced representations of reductive p-adic groups II: On irreducible representations of GL(n). Ann. Scient. École Norm. Sup. (4) 13 (1980), 165-210. Zbl0441.22014MR584084
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.