Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures

Colin J. Bushnell; Guy Henniart

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 2, page 309-347
  • ISSN: 1246-7405

Abstract

top
Let F / p be a finite field extension. The Langlands correspondence gives a canonical bijection between the set 𝒢 F 0 ( n ) of equivalence classes of irreducible n -dimensional representations of the Weil group 𝒲 F of F and the set 𝒜 F 0 ( n ) of equivalence classes of irreducible supercuspidal representations of GL n ( F ) . This paper is concerned with the case where n = p m . In earlier work, the authors constructed an explicit bijection π : 𝒢 F 0 ( p m ) 𝒜 F 0 ( p m ) using a non-Galois tame base change map. If this tame base change satisfies a certain conjectured automorphic Davenport-Hasse relation, and there exists a Langlands correspondence in p -power degree, then π is the Langlands correspondence. This paper is concerned with the problem of showing, without assuming a priori the existence of the Langlands correspondence, that (on the Davenport-Hasse conjecture) π preserves local constants of pairs, and so is a Langlands correspondence. The principal obstruction is the lack of knowledge of certain elementary properties of the local constant ϵ ( π 1 × π 2 , s , ψ F ) for π i 𝒜 F 0 ( p m i ) . We state these properties as conjectures (which are certainly true, as consequences of the existence of the Langlands correspondence and analogous properties of the Langlands-Deligne local constant) and show that they imply the desired result: π is a Langlands correspondence. In the process, we prove several new unconditional results concerning π , and give a complete account of the rationality properties of L -functions and local constants of pairs for GL n ( F ) .

How to cite

top

Bushnell, Colin J., and Henniart, Guy. "Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures." Journal de théorie des nombres de Bordeaux 12.2 (2000): 309-347. <http://eudml.org/doc/248477>.

@article{Bushnell2000,
abstract = {Let $F/\mathbb \{Q\}_p$ be a finite field extension. The Langlands correspondence gives a canonical bijection between the set $\mathcal \{G\}^0_F (n)$ of equivalence classes of irreducible $n$-dimensional representations of the Weil group $\mathcal \{W\}_F$ of $F$ and the set $\mathcal \{A\}^0_F (n)$ of equivalence classes of irreducible supercuspidal representations of GL$_n(F)$. This paper is concerned with the case where $n = p^m$. In earlier work, the authors constructed an explicit bijection $\pi : \mathcal \{G\}^0_F (p^m) \rightarrow \mathcal \{A\}^0_F (p^m)$ using a non-Galois tame base change map. If this tame base change satisfies a certain conjectured automorphic Davenport-Hasse relation, and there exists a Langlands correspondence in $p$-power degree, then $\pi $ is the Langlands correspondence. This paper is concerned with the problem of showing, without assuming a priori the existence of the Langlands correspondence, that (on the Davenport-Hasse conjecture) $\pi $ preserves local constants of pairs, and so is a Langlands correspondence. The principal obstruction is the lack of knowledge of certain elementary properties of the local constant $\epsilon (\pi _1 \times \pi _2, s, \psi _F)$ for $\pi _i \in \mathcal \{A\}^0_F (p^\{m_i\})$. We state these properties as conjectures (which are certainly true, as consequences of the existence of the Langlands correspondence and analogous properties of the Langlands-Deligne local constant) and show that they imply the desired result: $\pi $ is a Langlands correspondence. In the process, we prove several new unconditional results concerning $\pi $, and give a complete account of the rationality properties of $L$-functions and local constants of pairs for GL$_n(F)$.},
author = {Bushnell, Colin J., Henniart, Guy},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {309-347},
publisher = {Université Bordeaux I},
title = {Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures},
url = {http://eudml.org/doc/248477},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Bushnell, Colin J.
AU - Henniart, Guy
TI - Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 309
EP - 347
AB - Let $F/\mathbb {Q}_p$ be a finite field extension. The Langlands correspondence gives a canonical bijection between the set $\mathcal {G}^0_F (n)$ of equivalence classes of irreducible $n$-dimensional representations of the Weil group $\mathcal {W}_F$ of $F$ and the set $\mathcal {A}^0_F (n)$ of equivalence classes of irreducible supercuspidal representations of GL$_n(F)$. This paper is concerned with the case where $n = p^m$. In earlier work, the authors constructed an explicit bijection $\pi : \mathcal {G}^0_F (p^m) \rightarrow \mathcal {A}^0_F (p^m)$ using a non-Galois tame base change map. If this tame base change satisfies a certain conjectured automorphic Davenport-Hasse relation, and there exists a Langlands correspondence in $p$-power degree, then $\pi $ is the Langlands correspondence. This paper is concerned with the problem of showing, without assuming a priori the existence of the Langlands correspondence, that (on the Davenport-Hasse conjecture) $\pi $ preserves local constants of pairs, and so is a Langlands correspondence. The principal obstruction is the lack of knowledge of certain elementary properties of the local constant $\epsilon (\pi _1 \times \pi _2, s, \psi _F)$ for $\pi _i \in \mathcal {A}^0_F (p^{m_i})$. We state these properties as conjectures (which are certainly true, as consequences of the existence of the Langlands correspondence and analogous properties of the Langlands-Deligne local constant) and show that they imply the desired result: $\pi $ is a Langlands correspondence. In the process, we prove several new unconditional results concerning $\pi $, and give a complete account of the rationality properties of $L$-functions and local constants of pairs for GL$_n(F)$.
LA - eng
UR - http://eudml.org/doc/248477
ER -

References

top
  1. [1] J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the tmce formula. Annals of Math. Studies120, Princeton University Press (1989). Zbl0682.10022MR1007299
  2. [2] A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Math. Studies94, Princeton University Press (1980). Zbl0443.22010MR554917
  3. [3] C.J. Bushnell, A. Fröhlich, Gauss sums and p-adic division algebras. Lecture Notes in Math. 987, Springer Berlin (1983). Zbl0507.12008MR701540
  4. [4] C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) I: simple characters. Publ. Math. IHES83 (1996), 105-233. Zbl0878.11042MR1423022
  5. [5] C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) II: wildly ramified supercuspidals. Astérisque254 (1999). Zbl0920.11079MR1685898
  6. [6] C.J. Bushnell, G. Henniart, Davenport-Hasse relations and an explicit Langlands correspondence. J. reine angew. Math.519 (2000), 171-199. Zbl1029.11063MR1739725
  7. [7] C.J. Bushnell, G. Henniart, alculs de facteurs epsilon de paires pour GLn sur un corps local, I. Bull. London Math. Soc.31 (1999), 534-542. Zbl0928.22016MR1703873
  8. [8] C.J. Bushnell, G. Henniart, Calculs de facteurs epsilon de paires pour GLn sur un corps local, II. Compositio Math.123 (2000), 89-115. Zbl0969.22006MR1784757
  9. [9] C.J. Bushnell, G. Henniart, P.C. Kutzko, Local Rankin-Selberg convolutions for GLn: Explicit conductor formula. J. Amer. Math. Soc.11 (1998), 703-730. Zbl0899.22017MR1606410
  10. [10] C.J. Bushnell, G. Henniart, P.C. Kutzko, Correspondance de Langlands locale pour GLn et conducteurs de paires. Ann. Scient. École Norm. Sup. (4) 31 (1998), 537-560. Zbl0915.11055MR1634095
  11. [11] C.J. Bushnell, P.C. Kutzko, The admissible dual of GL(N) via compact open subgroups. Annals of Math. Studies129, Princeton University Press (1993). Zbl0787.22016MR1204652
  12. [12] W. Casselman, GLn. In: Algebraic Number Fields (ed A. Frohlich), Academic PressLondon (1977), 663-704. Zbl0398.12008MR562502
  13. [13] P. Deligne, Les constantes des équations fonctionnelles des fonctions L. In: Modular functions of one variable II (eds W. Kuyk and J.-P. Serre). Lecture Notes in Math. 349, Springer Berlin (1973), 501-595. Zbl0271.14011MR349635
  14. [14] M. Harris, Supercuspidal representations in the cohomology of Drinfel'd upper half-spaces; elaboration of Carayol's program. Invent. Math.129 (1997), 75-120. Zbl0886.11029MR1464867
  15. [15] M. Harris, The local Langlands conjecture for GL(n) over a p-adic field, n &lt; p. Invent. Math.134 (1998), 177-210. Zbl0921.11060MR1646587
  16. [16] M. Harris, R. Taylor, On the geometry and cohomology of some simple Shimura varieties. Prépublication, Institut de Math. Jussieu, November 1999. Zbl1036.11027
  17. [17] G. Henniart, La conjecture de Langlands locale pour GL(3). Mém. Soc. Math. France, nouvelle série 11/12 (1984). Zbl0577.12011MR743063
  18. [18] G. Henniart, Galois ε-factors modulo roots of unity. Invent. Math.78 (1984), 117-126. Zbl0557.12011
  19. [19] G. Henniart, La conjecture de Langlands locale numérique pour GL(n). Ann. Scient. École Norm. Sup. (4) 21 (1988), 497-544. Zbl0666.12013MR982332
  20. [20] G. Henniart, Une preuve simple des conjectures locales de Langlands pour GLn sur un corps p-adique. Invent. Math.139 (2000), 439-455. Zbl1048.11092MR1738446
  21. [21] G. Henniart, R. Herb, Automorphic induction for GL(n) (over local non-archimedean fields). Duke Math. J.78 (1995), 131-192. Zbl0849.11092MR1328755
  22. [22] H. Jacquet, I.I. Piatetskii-Shapiro, J.A. Shalika, Rankin-Selberg convolutions. Amer. J. Math.105 (1983), 367-483. Zbl0525.22018MR701565
  23. [23] P.C. Kutzko, The Langlands conjecture for GL2 of a local field. Ann. Math.112 (1980), 381-412. Zbl0469.22013MR592296
  24. [24] F. Rodier, Whittaker models for admissible representations of reductive p-adic split groups. In: Harmonic Analysis on Homogeneous Spaces (ed. C.C. Moore). Proc. Symposia Pure Math. XXZTI, Amer. Math. Soc., Providence RI (1973), 425-430. Zbl0287.22016MR354942
  25. [25] F. Rodier, Représentations de GL(n, k) où k est un corps p-adique. Astérisque92-93 (1982), 201-218. Zbl0506.22019MR689531
  26. [26] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n). Amer. J. Math.106 (1984), 67-111. Zbl0567.22008MR729755
  27. [27] A.J. Silberger, The Langlands Quotient Theorem for p-adic groups. Math. Ann.236 (1978), 95-104. Zbl0362.20029MR507262
  28. [28] A.V. Zelevinsky, Induced representations of reductive p-adic groups II: On irreducible representations of GL(n). Ann. Scient. École Norm. Sup. (4) 13 (1980), 165-210. Zbl0441.22014MR584084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.