Correspondance de Langlands locale pour et conducteurs de paires
Colin J. Bushnell; Guy Henniart; Philip C. Kutzko
Annales scientifiques de l'École Normale Supérieure (1998)
- Volume: 31, Issue: 4, page 537-560
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBushnell, Colin J., Henniart, Guy, and Kutzko, Philip C.. "Correspondance de Langlands locale pour ${\rm GL}_n$ et conducteurs de paires." Annales scientifiques de l'École Normale Supérieure 31.4 (1998): 537-560. <http://eudml.org/doc/82469>.
@article{Bushnell1998,
author = {Bushnell, Colin J., Henniart, Guy, Kutzko, Philip C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local Langlands conjecture for ; supercuspidal representation; representation of the Weil group; conductors of pairs},
language = {fre},
number = {4},
pages = {537-560},
publisher = {Elsevier},
title = {Correspondance de Langlands locale pour $\{\rm GL\}_n$ et conducteurs de paires},
url = {http://eudml.org/doc/82469},
volume = {31},
year = {1998},
}
TY - JOUR
AU - Bushnell, Colin J.
AU - Henniart, Guy
AU - Kutzko, Philip C.
TI - Correspondance de Langlands locale pour ${\rm GL}_n$ et conducteurs de paires
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 4
SP - 537
EP - 560
LA - fre
KW - local Langlands conjecture for ; supercuspidal representation; representation of the Weil group; conductors of pairs
UR - http://eudml.org/doc/82469
ER -
References
top- [1] J. ARTHUR et L. CLOZEL, Simple algebras, base change, and the advanced theory of the trace formula (Annals of Math. Studies, vol. 120, Princeton University Press, 1989). Zbl0682.10022MR90m:22041
- [2] C. J. BUSHNELL et A. FRÖHLICH, Gauss sums and p-adic division algebras (Lecture Notes in Math., vol. 987, Springer, Berlin, 1983). Zbl0507.12008MR84m:12017
- [3] C. J. BUSHNELL et G. HENNIART, Local tame lifting for GLn I : simple characters (Publ. Math. IHES, vol. 83, 1996, p. 105-233). Zbl0878.11042MR98m:11129
- [4] C. J. BUSHNELL et G. HENNIART, Local tame lifting for GLn II : wildly ramified supercuspidals (Manuscrit, Mai 1997). Zbl0920.11079
- [5] C. J. BUSHNELL, G. HENNIART et P. C. KUTZKO, Local Rankin-Selberg convolutions for GLn : Explicit conductor formula (J. Amer. Math. Soc., à paraître). Zbl0899.22017
- [6] C. J. BUSHNELL et P. C. KUTZKO, Simple types in GL(N) : computing conjugacy classes. Representation theory and analysis on homogeneous spaces (S. Gindikin et al, eds.) (Contemp. Math, vol. 177, Amer. Math. Soc., Providence, 1995, p. 107-135). Zbl0835.22009MR96c:22027
- [7] R. GODEMENT et H. JACQUET, Zeta functions of simple algebras (Lecture Notes in Math., vol. 260, Springer, Berlin 1972). Zbl0244.12011MR49 #7241
- [8] M. HARRIS, Supercuspidal representations in the cohomology of Drinfel'd upper half-spaces ; elaboration of Carayol's program (Invent. Math., vol. 129, 1997, p. 75-120). Zbl0886.11029MR98i:11100
- [9] M. HARRIS, p-adic uniformization and Galois properties of automorphic forms (Manuscrit, 1997).
- [10] G. HENNIART, Représentations du groupe de Weil d'un corps local (L'Ens. Math., vol. 26, 1980, p. 155-172). Zbl0452.12006MR81j:12012
- [11] G. HENNIART, La conjecture de Langlands locale pour GL(n). Journées Arithmétiques de Metz (Astérisque, vol. 94, 1982, p. 67-85). Zbl0504.12017MR84g:12021
- [12] G. HENNIART, La conjecture de Langlands locale pour GL(3) (Mém. Soc. Math. France, nouvelle série, vol. 11/12, 1984). Zbl0577.12011
- [13] G. HENNIART, On the local Langlands conjecture for GL(n) : the cyclic case (Ann. Math., vol. 123, 1986, p. 145-203). Zbl0588.12010MR87k:11132
- [14] G. HENNIART, La conjecture de Langlands locale numérique pour GL(n) (Ann. Scient. Éc. Norm. Sup., (4), vol. 21, 1988, p. 497-544). Zbl0666.12013MR90f:11094
- [15] G. HENNIART, Une conséquence de la théorie du changement de base pour GL(n) (Analytic Number Theory, Tokyo, Lecture Notes in Math. 1988, vol. 1434, Springer, Berlin, 1990, p. 138-142). Zbl0703.11069MR91i:22021
- [16] G. HENNIART, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires (Invent. Math., vol. 113, 1993, p. 339-350). Zbl0810.11069MR96e:11078
- [17] G. HENNIART, lettre à Michael Harris, janvier 1994.
- [18] G. HENNIART et R. HERB, Automorphic induction for GL(n) (over local non-archimedean fields) (Duke Math. J., vol. 78, 1995, p. 131-192). Zbl0849.11092MR96i:22038
- [19] H. JACQUET, I. I. PIATETSKII-SHAPIRO et J. SHALIKA, Conducteur des représentations du groupe linéaire (Math. Ann., vol. 236, 1981, p. 199-214). Zbl0443.22013MR83c:22025
- [20] H. JACQUET, I. I. PIATETSKII-SHAPIRO et J. A. SHALIKA, Rankin-Selberg convolutions (Amer. J. Math., vol. 105, 1983, p. 367-483). Zbl0525.22018MR85g:11044
- [21] H. JACQUET et J. A. SHALIKA, On Euler products and the classification of automorphic representations II (Amer. J. Math., vol. 103, 1981, p. 777-815). Zbl0491.10020
- [22] D. A. KAZHDAN, On lifting. Lie Group Representations II (Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, p. 209-249). Zbl0538.20014MR86h:22029
- [23] H. KOCH, Bemerkungen zur numerischen lokalen Langlands Vermutung (Proc. Steklov Inst., vol. 183, 1984, p. 129-136). Zbl0557.12009
- [24] P. C. KUTZKO, The Langlands conjecture for GL2 of a local field (Ann. Math., vol. 112, 1980, p. 381-412). Zbl0469.22013MR82e:12019
- [25] P. C. KUTZKO et A. MOY, On the local Langlands conjecture in prime dimension (Ann. Math., vol. 121, 1985, p. 495-517). Zbl0609.12017MR87d:11092
- [26] J.-P. LABESSE, Non-invariant base change identities (Bull. Soc. Math. France, vol. 61, 1995). Zbl0868.11026MR97b:11136
- [27] R. P. LANGLANDS, Problems in the theory of automorphic forms. Lectures in modern analysis and applications III (Lecture Notes in Math, vol. 170, Springer, Berlin, 1970, p. 18-86). Zbl0225.14022MR46 #1758
- [28] R. P. LANGLANDS, Base change for GL(2) (Ann. Math. Studies, vol. 96, Princeton University Press, 1980). Zbl0444.22007MR82a:10032
- [29] G. LAUMON, M. RAPOPORT et U. STUHLER, D-elliptic sheaves and the Langlands correspondence (Invent. Math., vol. 113, 1993, p. 217-338). Zbl0809.11032MR96e:11077
- [30] C. MŒGLIN, Sur la correspondance de Langlands-Kazhdan (J. Math. pures et appl., vol. 69, 1990, p. 175-226). Zbl0711.11045MR91g:11141
- [31] A. MOY, Local constants and the tame Langlands correspondence (Amer. J. Math., vol. 108, 1986, p. 863-930). Zbl0597.12019MR88b:11081
- [32] H. REIMANN, Representations of tamely ramified p-adic division and matrix rings (J. Number Theory, vol. 38, 1991, p. 58-105). Zbl0728.11063MR92h:11103
- [33] F. RODIER, Représentations de GL(n, k) où k est un corps p-adique (Séminaire Bourbaki, vol. 587, 1981/1982, Astérisque, vol. 92-93, 1982, p. 201-218). Zbl0506.22019MR84h:22040
- [34] F. SHAHIDI, Fourier transforms of intertwining operators and Plancherel measures for GL(n) (Amer. J. Math., vol. 106, 1984, p. 67-111). Zbl0567.22008MR86b:22031
- [35] J. TATE, Number theoretic background. Automorphic forms, representations and L-functions (A. Borel and W. Casselman, eds.) (Proc. Symposia Pure Math, vol. 33, part 2 (Amer. Math. Soc., Providence, 1979), p. 3-22). Zbl0422.12007MR80m:12009
- [36] A. V. ZELEVINSKY, Induced representations of reductive p-adic groups II : On irreducible representations of GL(n) (Ann. Scient. Éc. Norm. Sup., (4), vol. 13, 1980, p. 165-210). Zbl0441.22014MR83g:22012
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.