Correspondance de Langlands locale pour GL n et conducteurs de paires

Colin J. Bushnell; Guy Henniart; Philip C. Kutzko

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 4, page 537-560
  • ISSN: 0012-9593

How to cite

top

Bushnell, Colin J., Henniart, Guy, and Kutzko, Philip C.. "Correspondance de Langlands locale pour ${\rm GL}_n$ et conducteurs de paires." Annales scientifiques de l'École Normale Supérieure 31.4 (1998): 537-560. <http://eudml.org/doc/82469>.

@article{Bushnell1998,
author = {Bushnell, Colin J., Henniart, Guy, Kutzko, Philip C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local Langlands conjecture for ; supercuspidal representation; representation of the Weil group; conductors of pairs},
language = {fre},
number = {4},
pages = {537-560},
publisher = {Elsevier},
title = {Correspondance de Langlands locale pour $\{\rm GL\}_n$ et conducteurs de paires},
url = {http://eudml.org/doc/82469},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Bushnell, Colin J.
AU - Henniart, Guy
AU - Kutzko, Philip C.
TI - Correspondance de Langlands locale pour ${\rm GL}_n$ et conducteurs de paires
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 4
SP - 537
EP - 560
LA - fre
KW - local Langlands conjecture for ; supercuspidal representation; representation of the Weil group; conductors of pairs
UR - http://eudml.org/doc/82469
ER -

References

top
  1. [1] J. ARTHUR et L. CLOZEL, Simple algebras, base change, and the advanced theory of the trace formula (Annals of Math. Studies, vol. 120, Princeton University Press, 1989). Zbl0682.10022MR90m:22041
  2. [2] C. J. BUSHNELL et A. FRÖHLICH, Gauss sums and p-adic division algebras (Lecture Notes in Math., vol. 987, Springer, Berlin, 1983). Zbl0507.12008MR84m:12017
  3. [3] C. J. BUSHNELL et G. HENNIART, Local tame lifting for GLn I : simple characters (Publ. Math. IHES, vol. 83, 1996, p. 105-233). Zbl0878.11042MR98m:11129
  4. [4] C. J. BUSHNELL et G. HENNIART, Local tame lifting for GLn II : wildly ramified supercuspidals (Manuscrit, Mai 1997). Zbl0920.11079
  5. [5] C. J. BUSHNELL, G. HENNIART et P. C. KUTZKO, Local Rankin-Selberg convolutions for GLn : Explicit conductor formula (J. Amer. Math. Soc., à paraître). Zbl0899.22017
  6. [6] C. J. BUSHNELL et P. C. KUTZKO, Simple types in GL(N) : computing conjugacy classes. Representation theory and analysis on homogeneous spaces (S. Gindikin et al, eds.) (Contemp. Math, vol. 177, Amer. Math. Soc., Providence, 1995, p. 107-135). Zbl0835.22009MR96c:22027
  7. [7] R. GODEMENT et H. JACQUET, Zeta functions of simple algebras (Lecture Notes in Math., vol. 260, Springer, Berlin 1972). Zbl0244.12011MR49 #7241
  8. [8] M. HARRIS, Supercuspidal representations in the cohomology of Drinfel'd upper half-spaces ; elaboration of Carayol's program (Invent. Math., vol. 129, 1997, p. 75-120). Zbl0886.11029MR98i:11100
  9. [9] M. HARRIS, p-adic uniformization and Galois properties of automorphic forms (Manuscrit, 1997). 
  10. [10] G. HENNIART, Représentations du groupe de Weil d'un corps local (L'Ens. Math., vol. 26, 1980, p. 155-172). Zbl0452.12006MR81j:12012
  11. [11] G. HENNIART, La conjecture de Langlands locale pour GL(n). Journées Arithmétiques de Metz (Astérisque, vol. 94, 1982, p. 67-85). Zbl0504.12017MR84g:12021
  12. [12] G. HENNIART, La conjecture de Langlands locale pour GL(3) (Mém. Soc. Math. France, nouvelle série, vol. 11/12, 1984). Zbl0577.12011
  13. [13] G. HENNIART, On the local Langlands conjecture for GL(n) : the cyclic case (Ann. Math., vol. 123, 1986, p. 145-203). Zbl0588.12010MR87k:11132
  14. [14] G. HENNIART, La conjecture de Langlands locale numérique pour GL(n) (Ann. Scient. Éc. Norm. Sup., (4), vol. 21, 1988, p. 497-544). Zbl0666.12013MR90f:11094
  15. [15] G. HENNIART, Une conséquence de la théorie du changement de base pour GL(n) (Analytic Number Theory, Tokyo, Lecture Notes in Math. 1988, vol. 1434, Springer, Berlin, 1990, p. 138-142). Zbl0703.11069MR91i:22021
  16. [16] G. HENNIART, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires (Invent. Math., vol. 113, 1993, p. 339-350). Zbl0810.11069MR96e:11078
  17. [17] G. HENNIART, lettre à Michael Harris, janvier 1994. 
  18. [18] G. HENNIART et R. HERB, Automorphic induction for GL(n) (over local non-archimedean fields) (Duke Math. J., vol. 78, 1995, p. 131-192). Zbl0849.11092MR96i:22038
  19. [19] H. JACQUET, I. I. PIATETSKII-SHAPIRO et J. SHALIKA, Conducteur des représentations du groupe linéaire (Math. Ann., vol. 236, 1981, p. 199-214). Zbl0443.22013MR83c:22025
  20. [20] H. JACQUET, I. I. PIATETSKII-SHAPIRO et J. A. SHALIKA, Rankin-Selberg convolutions (Amer. J. Math., vol. 105, 1983, p. 367-483). Zbl0525.22018MR85g:11044
  21. [21] H. JACQUET et J. A. SHALIKA, On Euler products and the classification of automorphic representations II (Amer. J. Math., vol. 103, 1981, p. 777-815). Zbl0491.10020
  22. [22] D. A. KAZHDAN, On lifting. Lie Group Representations II (Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, p. 209-249). Zbl0538.20014MR86h:22029
  23. [23] H. KOCH, Bemerkungen zur numerischen lokalen Langlands Vermutung (Proc. Steklov Inst., vol. 183, 1984, p. 129-136). Zbl0557.12009
  24. [24] P. C. KUTZKO, The Langlands conjecture for GL2 of a local field (Ann. Math., vol. 112, 1980, p. 381-412). Zbl0469.22013MR82e:12019
  25. [25] P. C. KUTZKO et A. MOY, On the local Langlands conjecture in prime dimension (Ann. Math., vol. 121, 1985, p. 495-517). Zbl0609.12017MR87d:11092
  26. [26] J.-P. LABESSE, Non-invariant base change identities (Bull. Soc. Math. France, vol. 61, 1995). Zbl0868.11026MR97b:11136
  27. [27] R. P. LANGLANDS, Problems in the theory of automorphic forms. Lectures in modern analysis and applications III (Lecture Notes in Math, vol. 170, Springer, Berlin, 1970, p. 18-86). Zbl0225.14022MR46 #1758
  28. [28] R. P. LANGLANDS, Base change for GL(2) (Ann. Math. Studies, vol. 96, Princeton University Press, 1980). Zbl0444.22007MR82a:10032
  29. [29] G. LAUMON, M. RAPOPORT et U. STUHLER, D-elliptic sheaves and the Langlands correspondence (Invent. Math., vol. 113, 1993, p. 217-338). Zbl0809.11032MR96e:11077
  30. [30] C. MŒGLIN, Sur la correspondance de Langlands-Kazhdan (J. Math. pures et appl., vol. 69, 1990, p. 175-226). Zbl0711.11045MR91g:11141
  31. [31] A. MOY, Local constants and the tame Langlands correspondence (Amer. J. Math., vol. 108, 1986, p. 863-930). Zbl0597.12019MR88b:11081
  32. [32] H. REIMANN, Representations of tamely ramified p-adic division and matrix rings (J. Number Theory, vol. 38, 1991, p. 58-105). Zbl0728.11063MR92h:11103
  33. [33] F. RODIER, Représentations de GL(n, k) où k est un corps p-adique (Séminaire Bourbaki, vol. 587, 1981/1982, Astérisque, vol. 92-93, 1982, p. 201-218). Zbl0506.22019MR84h:22040
  34. [34] F. SHAHIDI, Fourier transforms of intertwining operators and Plancherel measures for GL(n) (Amer. J. Math., vol. 106, 1984, p. 67-111). Zbl0567.22008MR86b:22031
  35. [35] J. TATE, Number theoretic background. Automorphic forms, representations and L-functions (A. Borel and W. Casselman, eds.) (Proc. Symposia Pure Math, vol. 33, part 2 (Amer. Math. Soc., Providence, 1979), p. 3-22). Zbl0422.12007MR80m:12009
  36. [36] A. V. ZELEVINSKY, Induced representations of reductive p-adic groups II : On irreducible representations of GL(n) (Ann. Scient. Éc. Norm. Sup., (4), vol. 13, 1980, p. 165-210). Zbl0441.22014MR83g:22012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.