Congruences modulo between factors for cuspidal representations of
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 2, page 571-580
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topVignéras, Marie-France. "Congruences modulo $\ell $ between $\epsilon $ factors for cuspidal representations of $GL(2)$." Journal de théorie des nombres de Bordeaux 12.2 (2000): 571-580. <http://eudml.org/doc/248493>.
@article{Vignéras2000,
abstract = {Let $\ell \ne p$ be two different prime numbers, let $F$ be a local non archimedean field of residual characteristic $p$, and let $\overline\{\mathbf \{Q\}\}_\ell , \overline\{\mathbf \{Z\}\}_\ell , \overline\{\mathbf \{F\}\}_\ell $ be an algebraic closure of the field of $\ell $-adic numbers $\mathbf \{Q\}_\ell $, the ring of integers of $\overline\{\mathbf \{Q\}\}_\ell $, the residual field of $\overline\{\mathbf \{Z\}\}_\ell $. We proved the existence and the unicity of a Langlands local correspondence over $\overline\{\mathbf \{F\}\}_\ell $ for all $n \ge 2$, compatible with the reduction modulo $\ell $ in [V5], without using $L$ and $\epsilon $factors of pairs. We conjecture that the Langlands local correspondence over $\overline\{\mathbf \{Q\}\}_\ell $ respects congruences modulo $\ell $ between $L$ and $\epsilon $ factors of pairs, and that the Langlands local correspondence over $\overline\{\mathbf \{F\}\}_\ell $ is characterized by identities between new $L$ and $\epsilon $ factors. The aim of this short paper is prove this when $n = 2$.},
author = {Vignéras, Marie-France},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {local Langlands correspondence},
language = {eng},
number = {2},
pages = {571-580},
publisher = {Université Bordeaux I},
title = {Congruences modulo $\ell $ between $\epsilon $ factors for cuspidal representations of $GL(2)$},
url = {http://eudml.org/doc/248493},
volume = {12},
year = {2000},
}
TY - JOUR
AU - Vignéras, Marie-France
TI - Congruences modulo $\ell $ between $\epsilon $ factors for cuspidal representations of $GL(2)$
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 571
EP - 580
AB - Let $\ell \ne p$ be two different prime numbers, let $F$ be a local non archimedean field of residual characteristic $p$, and let $\overline{\mathbf {Q}}_\ell , \overline{\mathbf {Z}}_\ell , \overline{\mathbf {F}}_\ell $ be an algebraic closure of the field of $\ell $-adic numbers $\mathbf {Q}_\ell $, the ring of integers of $\overline{\mathbf {Q}}_\ell $, the residual field of $\overline{\mathbf {Z}}_\ell $. We proved the existence and the unicity of a Langlands local correspondence over $\overline{\mathbf {F}}_\ell $ for all $n \ge 2$, compatible with the reduction modulo $\ell $ in [V5], without using $L$ and $\epsilon $factors of pairs. We conjecture that the Langlands local correspondence over $\overline{\mathbf {Q}}_\ell $ respects congruences modulo $\ell $ between $L$ and $\epsilon $ factors of pairs, and that the Langlands local correspondence over $\overline{\mathbf {F}}_\ell $ is characterized by identities between new $L$ and $\epsilon $ factors. The aim of this short paper is prove this when $n = 2$.
LA - eng
KW - local Langlands correspondence
UR - http://eudml.org/doc/248493
ER -
References
top- [D] P. Deligne, Les constantes des équations fonctionnelles des fonctions L. Modular functions of one variable II. Lecture Notes in Mathematics 340, Springer-Verlag (1973). Zbl0271.14011MR349635
- [GK] I.M. Gelfand, D.A. Kazhdan, Representations of the group GL(n, K) where K is a local field. In: Lie groups and Representations, Proceedings of a summer school in Hungary (1971), Akademia Kiado, Budapest (1974). Zbl0348.22011
- [H1] G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires. Invent. math.113 (1993), 339-350. Zbl0810.11069
- [H2] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Prepublication 99-14, Orsay.
- [HT] M. Harris, R. Taylor, On the geometry and cohomology of some simple Shimura varieties. Institut de Mathématiques de Jussieu. Prépublication227 (1999). Zbl1036.11027
- [JL] H. Jacquet, R.P. Langlands, Automorphic forms on GL(2). Lecture Notes in Math. 114, Springer-Verlag (1970). Zbl0236.12010MR401654
- [JPS1] H. Jacquet, I.I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions. Amer. J. Math.105 (1983), 367-483. Zbl0525.22018MR701565
- [JPS2] H. Jacquet, I.I. Piatetski-Shapiro, J. Shalika, Conducteur des représentations du groupe linéaire. Math. Ann.256 (1981), 199-214. Zbl0443.22013MR620708
- [L] S. Lang, Algebra. Addison Wesley, second edition (1984). Zbl0712.00001MR783636
- [LRS] G. Laumon, M. Rapoport, U. Stuhler, D-elliptic sheaves and the Langlands correspondence. Invent. Math.113 (1993), 217-238. Zbl0809.11032MR1228127
- [M] J. Martinet, Character theory and Artin L-functions. In: Algebraic number fields, A. Frohlich editor, Academic Press (1977), 1-88. Zbl0359.12015MR447187
- [V1] M.-F. Vignéras, Representations modulaires d'un groupe réductif p-adique avec ≠ p. Progress in Math.137Birkhauser (1996). Zbl0859.22001MR1395151
- [V2] M.-F. Vignéras, Erratum à l'article: Représentations modulaires de GL(2, F) en caractéristique , F corps p-adique, p ≠. Compos. Math.101 (1996), 109-113. Zbl0846.22004MR1390835
- [V3] M.-F. Vignéras, A propos d'une correspondance de Langlands modulaire. Dans: Finite reductive groups, M. Cabanes Editor, Birkhauser Progress in Math141(1997). MR1429882
- [V4] M.-F. Vign, Integral Kirillov model. C.R. Acad. Sci. Paris Série I326 (1998), 411-416. Zbl0909.22033MR1648960
- [V5] M.-F. Vignéras, Correspondance de Langlands semi-simple pour GL(n, F) modulo ≠ p. Institut de Mathématiques de Jussieu. Prepublication 235 (Janvier 2000).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.