Partitions sans petites parts
Elie Mosaki[1]; Jean-Louis Nicolas[1]; András Sárkőzy[2]
- [1] Université Claude Bernard (Lyon 1) 21 avenue Claude Bernard F-69622 Villeurbanne Cedex, France
- [2] Eötvös Loránd University Department of Algebra and Number Theory H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 607-638
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. Dixmier, J.L. Nicolas, Partitions sans petits sommants. A tribute to Paul Erdős, 121–152. Cambridge Univ. Press, Cambridge, 1990. Zbl0719.11067MR1117009
- J. Dixmier, J.L. Nicolas, Partitions without small parts. Number theory, Vol. I (Budapest, 1987), 9–33, North-Holland, Amsterdam, 1990. Zbl0707.11072MR1058207
- G. Freiman, J. Pitman, Partitions into distinct large parts. J. Austral. Math. Soc. Ser. A 57(3) (1994), 386–416. Zbl0824.11064MR1297011
- G. H. Hardy, S. Ramanujan, Asymptotic formulae in combinatory analysis. J. London Math. Society 17 (1918), 75–115. Zbl46.0198.04
- G. H. Hardy, Divergent series. Oxford, at the Clarendon Press, 1949. Zbl0032.05801MR30620
- J. Herzog, Gleichmässige asymptotische Formeln für parameterabhängige Partitionfunktionen. Thèse de l’Université J. F. Goethe, Frankfurt am Main, mars 1987. Zbl0622.10034
- D. E. Knuth, The Art of Computer Programming vol. 2. Addison Wesley, edition, 1981. Zbl0477.65002MR633878
- E. Mosaki, Thèse de l’Université Lyon 1 (en préparation).
- J.-L. Nicolas, A. Sárközy, On partitions without small parts. J. de Théorie des Nombres de Bordeaux 12 (2000), 227–254. Zbl1005.11049MR1827850
- G. Szekeres, An asymptotic formula in the theory of partitions. Quart. J. Math., Oxford 2 (1951), 85–108. Zbl0042.04102MR43129
- G. Szekeres, Some asymptotic formulae in the theory of partitions. II. Quart. J. Math., Oxford 4 (1953), 96–111. Zbl0050.04101MR57279