Zeroes of the Bergman kernel of Hartogs domains

Miroslav Engliš

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 1, page 199-202
  • ISSN: 0010-2628

Abstract

top
We exhibit a class of bounded, strongly convex Hartogs domains with real-analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.

How to cite

top

Engliš, Miroslav. "Zeroes of the Bergman kernel of Hartogs domains." Commentationes Mathematicae Universitatis Carolinae 41.1 (2000): 199-202. <http://eudml.org/doc/248643>.

@article{Engliš2000,
abstract = {We exhibit a class of bounded, strongly convex Hartogs domains with real-analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.},
author = {Engliš, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel; Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel},
language = {eng},
number = {1},
pages = {199-202},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Zeroes of the Bergman kernel of Hartogs domains},
url = {http://eudml.org/doc/248643},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Engliš, Miroslav
TI - Zeroes of the Bergman kernel of Hartogs domains
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 1
SP - 199
EP - 202
AB - We exhibit a class of bounded, strongly convex Hartogs domains with real-analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.
LA - eng
KW - Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel; Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel
UR - http://eudml.org/doc/248643
ER -

References

top
  1. Boas H.P., Counterexample to the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 97 (1986), 374-375. (1986) Zbl0596.32032MR0835902
  2. Boas H.P., The Lu Qi-Keng conjecture fails generically, Proc. Amer. Math. Soc. 124 (1996), 2021-2027. (1996) Zbl0857.32010MR1317032
  3. Boas H.P., Fu S., Straube E., The Bergman kernel function: explicit formulas and zeroes, Proc. Amer. Math. Soc. 127 (1999), 805-811. (1999) Zbl0919.32013MR1469401
  4. Engliš M., Asymptotic behaviour of reproducing kernels of weighted Bergman spaces, Trans. Amer. Math. Soc. 349 (1997), 3717-3735. (1997) MR1401769
  5. Engliš M., A Forelli-Rudin construction and asymptotics of weighted Bergman kernels, preprint, 1998. MR1795632
  6. Ligocka E., On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), 257-272. (1989) Zbl0688.32020MR1019793
  7. Lu Q.-K. (K.H. Look), On Kaehler manifolds with constant curvature, Chinese Math. 8 (1966), 283-298. (1966) MR0206990
  8. Oeljeklaus K., Pflug P., Youssfi E.H., The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928. (1997) Zbl0873.32025MR1465791
  9. Pflug P., Youssfi E.H., The Lu Qi-Keng conjecture fails for strongly convex algebraic domains, Arch. Math. 71 (1998), 240-245. (1998) Zbl0911.32037MR1637386
  10. Skwarczynski M., Biholomorphic invariants related to the Bergman function, Dissertationes Math. 173 (1980). (1980) Zbl0443.32014MR0575756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.