Best simultaneous diophantine approximations of some cubic algebraic numbers

Nicolas Chevallier

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 403-414
  • ISSN: 1246-7405

Abstract

top
Let α be a real algebraic number of degree 3 over whose conjugates are not real. There exists an unit ζ of the ring of integer of K = ( α ) for which it is possible to describe the set of all best approximation vectors of θ = ( ζ , ζ 2 ) .’

How to cite

top

Chevallier, Nicolas. "Best simultaneous diophantine approximations of some cubic algebraic numbers." Journal de théorie des nombres de Bordeaux 14.2 (2002): 403-414. <http://eudml.org/doc/248920>.

@article{Chevallier2002,
abstract = {Let $\alpha $ be a real algebraic number of degree $3$ over $\mathbb \{Q\}$ whose conjugates are not real. There exists an unit $\zeta $ of the ring of integer of $K = \mathbb \{Q\}(\alpha )$ for which it is possible to describe the set of all best approximation vectors of $\theta = (\zeta , \zeta ^2)$.’},
author = {Chevallier, Nicolas},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {simultaneous diophantine approximation; real cubic numbers; Jacobi-Perron algorithm; continued fractions},
language = {eng},
number = {2},
pages = {403-414},
publisher = {Université Bordeaux I},
title = {Best simultaneous diophantine approximations of some cubic algebraic numbers},
url = {http://eudml.org/doc/248920},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Chevallier, Nicolas
TI - Best simultaneous diophantine approximations of some cubic algebraic numbers
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 403
EP - 414
AB - Let $\alpha $ be a real algebraic number of degree $3$ over $\mathbb {Q}$ whose conjugates are not real. There exists an unit $\zeta $ of the ring of integer of $K = \mathbb {Q}(\alpha )$ for which it is possible to describe the set of all best approximation vectors of $\theta = (\zeta , \zeta ^2)$.’
LA - eng
KW - simultaneous diophantine approximation; real cubic numbers; Jacobi-Perron algorithm; continued fractions
UR - http://eudml.org/doc/248920
ER -

References

top
  1. [1] W.W. Adams, Simultaneous diophantine Approximations and Cubic Irrationals. Pacific J. Math.30 (1969), 1-14. Zbl0182.37803MR245522
  2. [2] W.W. Adams, Simultaneous Asymptotic diophantine Approximations to a Basis of a Real Cubic Field. J. Number Theory1 (1969), 179-194. Zbl0172.06501MR240055
  3. [3] P. Bachmann, Zur Theory von Jacobi's Kettenbruch-Algorithmen, J. Reine Angew. Math. 75 (1873), 25-34. JFM04.0082.03
  4. [4] L. Bernstein, The Jacobi-Perron algorithm-Its theory and applications, Lectures Notes in Mathematics207, Springer-Verlag, 1971. Zbl0213.05201MR285478
  5. [5] A.J. Brentjes, Multi-dimensional continued fraction algorithms, Mathematics Center Tracts155, Amsterdam, 1982. Zbl0471.10024MR702520
  6. [6] J.W.S. Cassels, An introduction to diophantine approximation. Cambridge University Press, 1965. Zbl0077.04801MR87708
  7. [7] N. Chekhova, P. Hubert, A. Messaoudi, Propriété combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci. J. Théor. Nombres Bordeaux13 (2001), 371-394. Zbl1038.37010MR1879664
  8. [8] N. Chevallier, Meilleures approximations d'un élément du tore T2 et géométrie de cet élément. Acta Arith.78 (1996), 19-35. Zbl0863.11043MR1424999
  9. [9] E. Dubois, R. Paysant-Le Roux, Algorithme de Jacobi-Perron dans les extensions cubiques. C. R. Acad. Sci. Paris Sér. A280 (1975), 183-186. Zbl0297.12002MR360517
  10. [10] J.C. Lagarias, Some New results in simultaneous diophantine approximation. In Proc. of Queen's Number Theory Conference 1979 (P. Ribenboim, Ed.), Queen's Papers in Pure and Applied Math. No. 54 (1980), 453-574. Zbl0453.10035
  11. [11] J.C. Lagarias, Best simultaneous diophantine approximation I. Growth rates of best approximations denominators. Trans. Amer. Math. Soc.272 (1982), 545-554. Zbl0495.10021MR662052
  12. [12] H. Minkowski, Über periodish Approximationen Algebraischer Zalhen. Acta Math.26 (1902), 333-351. JFM33.0216.02
  13. [13] O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenalgorithmus. Math. Ann.64 (1907), 1-76. Zbl38.0262.01MR1511422JFM38.0262.01
  14. [14] G. Rauzy, Nombre algébrique et substitution. Bull. Soc. Math. France110 (1982), 147-178. Zbl0522.10032MR667748

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.