Analytic and combinatoric aspects of Hurwitz polyzêtas

Jean-Yves Enjalbert[1]; Hoang Ngoc Minh[1]

  • [1] Université Lille II 1 place Déliot 59024 Lille, France

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 3, page 595-640
  • ISSN: 1246-7405

Abstract

top
In this work, a symbolic encoding of generalized Di-richlet generating series is found thanks to combinatorial techniques of noncommutative rational power series. This enables to explicit periodic generalized Dirichlet generating series – particularly the coloured polyzêtas – as linear combinations of Hurwitz polyzêtas. Moreover, the noncommutative version of the convolution theorem gives easily rise to an integral representation of Hurwitz polyzêtas. This representation enables us to build the analytic continuation of Hurwitz polyzêtas as multivariate meromorphic functions.

How to cite

top

Enjalbert, Jean-Yves, and Ngoc Minh, Hoang. "Analytic and combinatoric aspects of Hurwitz polyzêtas." Journal de Théorie des Nombres de Bordeaux 19.3 (2007): 595-640. <http://eudml.org/doc/249979>.

@article{Enjalbert2007,
abstract = {In this work, a symbolic encoding of generalized Di-richlet generating series is found thanks to combinatorial techniques of noncommutative rational power series. This enables to explicit periodic generalized Dirichlet generating series – particularly the coloured polyzêtas – as linear combinations of Hurwitz polyzêtas. Moreover, the noncommutative version of the convolution theorem gives easily rise to an integral representation of Hurwitz polyzêtas. This representation enables us to build the analytic continuation of Hurwitz polyzêtas as multivariate meromorphic functions.},
affiliation = {Université Lille II 1 place Déliot 59024 Lille, France; Université Lille II 1 place Déliot 59024 Lille, France},
author = {Enjalbert, Jean-Yves, Ngoc Minh, Hoang},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {multiple Hurwitz zeta function; analytic continuation},
language = {eng},
number = {3},
pages = {595-640},
publisher = {Université Bordeaux 1},
title = {Analytic and combinatoric aspects of Hurwitz polyzêtas},
url = {http://eudml.org/doc/249979},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Enjalbert, Jean-Yves
AU - Ngoc Minh, Hoang
TI - Analytic and combinatoric aspects of Hurwitz polyzêtas
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 3
SP - 595
EP - 640
AB - In this work, a symbolic encoding of generalized Di-richlet generating series is found thanks to combinatorial techniques of noncommutative rational power series. This enables to explicit periodic generalized Dirichlet generating series – particularly the coloured polyzêtas – as linear combinations of Hurwitz polyzêtas. Moreover, the noncommutative version of the convolution theorem gives easily rise to an integral representation of Hurwitz polyzêtas. This representation enables us to build the analytic continuation of Hurwitz polyzêtas as multivariate meromorphic functions.
LA - eng
KW - multiple Hurwitz zeta function; analytic continuation
UR - http://eudml.org/doc/249979
ER -

References

top
  1. S. Akiyama, S. Egami & Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers. Acta Arith. XCVIII (2001), 107–116. Zbl0972.11085MR1831604
  2. J. Berstel & C. Reutenauer, Rational series and their languages. Springer.-Verlag., 1988. Zbl0668.68005MR971022
  3. M. Bigotte, Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres Euler-Zagier colorés. Thèse, Université Lille 1, Décembre 2000. 
  4. J.M. Borwein, D.M. Bradley, D.J. Broadhurst & P. Lisonek, Special Values of Multiple Polylogarithms. in Trans. of the Amer. Math. Soc., 2000. Zbl1002.11093MR1709772
  5. L. Boutet de Monvel, Remarque sur les séries polylogarithmes divergentes. Collogue ”Polylogarithme, Multizêta et la conjecture Deligne-Ihara”, Luminy, Avril 2000. 
  6. P. Cartier, Les méthodes de régularisation en physique mathématique. Séminaire IHP, Janvier 2000. 
  7. P. Cartier, An introduction to zeta functions. Number Theory to Physics (Les Houches, 1989), M. Waldschmidt, P. Moussa, J.-M. Luck, C. Itzykson, eds., Springer-Verlag, Berlin, 1992, pp. 1–63. Zbl0790.11061MR1221100
  8. G.J. Chaitin, Algorithmic Information Theory. Cambridge University Press, 1987 Zbl0655.68003MR917482
  9. K.T. Chen, Iterated path integrals. Bull. Amer. Math. Soc. 83 (1977), 831–879. Zbl0389.58001MR454968
  10. L. Comtet, Advanced combinatorics. Reidel, Dordrecht, 1974 Zbl0283.05001MR460128
  11. C. Costermans, J.Y. Enjalbert & Hoang Ngoc Minh, Algorithmic and combinatoric aspects of multiple harmonic sums. In the proceeding of AofA, Barcelon, 6–10 June, (2005). Zbl1104.68075
  12. C. Costermans, J.Y. Enjalbert, Hoang Ngoc Minh & M. Petitot, Structure and asymptotic expansion of multiple harmonic sums. In the proceeding of ISSAC, Beijing, 24–27 July, (2005). Zbl06459436
  13. J. Dieudonné, Calcul infinitésimal. Hermann, 1968 Zbl0155.10001MR226971
  14. J. Ecalle, La libre génération des multizêtas et leur décomposition canonico-explicite en irréductibles. séminaire IHP, Décembre 1999. 
  15. J. Ecalle, ARI/GARI, la dimorphie et l’arithmétique des multizêtas : un premier bilan. Journal de Théorie des Nombres de Bordeaux 15 n°2 (2003), 411–478. Zbl1094.11032
  16. P. Flajolet & R. Sedgewick, The Average Case Analysis of Algorithms: Mellin Transform Asymptotics. Research Report 2956, Institut National de Recherche en Informatique et en Automatique, 1996. Zbl0841.68059
  17. P. Flajolet & B. Vallée, Continued Fractions, Comparison Algorithms, and Fine Structure Constants. Research Report 4072, Institut National de Recherche en Informatique et en Automatique, 2000. Zbl1006.11087MR1777617
  18. I.M. Gelfand & G.E. Shilov, Generalized function. Vol. 1., Properties and operations. Academic Press, New York-London, 1964 [1977]. Zbl0115.33101MR435831
  19. A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes. Math. Res Letters 5 (1998), 497–516. Zbl0961.11040MR1653320
  20. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives. ArXiv:math. AG/0103059 v4, pp 497–516, 2001. Zbl0961.11040MR1653320
  21. Hoang Ngoc Minh, Summations of Polylogarithms via Evaluation Transform. Mathematics and Computers in Simulations 42 no. 4-6 (1996), 707–728. Zbl1037.33500MR1430852
  22. Hoang Ngoc Minh, Fonctions de Dirichlet d’ordre n et de paramètre t . Discrete Math. 180 (1998), 221–241. Zbl1036.05003
  23. Hoang Ngoc Minh & M. Petitot, Lyndon words, polylogarithmic functions and the Riemann ζ function. Discrete Math. 217 (2000), 273–292. Zbl0959.68144MR1766271
  24. Hoang Ngoc Minh, M. Petitot & J. Van der Hoeven, Polylogarithms and Shuffle Algebra. FPSAC’98, Toronto, Canada, Juin 1998. Zbl0965.68129
  25. Hoang Ngoc Minh, M. Petitot & J. Van der Hoeven, L’algèbre des polylogarithmes par les séries génératrices. FPSAC’99, Barcelone, Espagne, Juillet 1999. 
  26. Hoang Ngoc Minh, Jacob G., N.E. Oussous, M. Petitot, Aspects combinatoires des polylogarithmes et des sommes d’Euler-Zagier. Journal electronique du Séminaire Lotharingien de Combinatoire B43e, (2000). Zbl0964.33003
  27. Hoang Ngoc Minh, Jacob G., N.E. Oussous, M. Petitot, De l’algèbre des ζ de Riemann multivariées à l’algèbre des ζ de Hurwitz multivariées. journal electronique du Séminaire Lotharingien de Combinatoire B44e, (2001). Zbl1035.11039
  28. Hoang Ngoc Minh, Des propriétés structurelles des polylogarithmes aux aspects algorithmiques des sommes harmoniques multiples. Groupe de travail Polylogarithmes et Polyzêtas, (2005). 
  29. Hoang Ngoc Minh, Differential Galois groups and noncommutative generating series of polylogarithms. In the proceeding of 7 t h World Multiconference on Systemics, Cybernetics and informatics, pp. 128–135, Orlando, Florida, July (2003). 
  30. Hoang Ngoc Minh, Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series. In the proceeding of 4 t h International Conference on Words, pp. 232-250, September, 10-13, 2003 Turku, Finland Zbl1067.11011MR2081357
  31. M. Hoffman, The algebra of multiple harmonic series. Jour. of Alg., August 1997. Zbl0881.11067MR1467164
  32. C. Laurent-Thiébaut, théorie des fonctions holomorphes de plusieurs variables. InterÉdition/CNRS Éditions, (1997). Zbl0887.32001MR1471209
  33. T.Q.T. Lê & J. Murakami, Kontsevich’s integral for Kauffman polynomial. Nagoya Math. (1996), 39–65. Zbl0866.57008
  34. N. Nielsen, Recherches sur le carré de la dérivée logarithmique de la fonction gamma et sur quelques fonctions analogues. Annali di Matematica 9 (1904), 190–210. Zbl35.0457.03
  35. N. Nielsen, Note sur quelques séries de puissance trouvées dans la théorie de la fonction gamma. Annali di Matematica 9 (1904), 211–218. Zbl35.0459.01
  36. N. Nielsen, Recherches sur des généralisations d’une fonction de Legendre et d’Abel. Annali di Matematica 9 (1904), 219–235. Zbl35.0455.02
  37. D.E. Radford, A natural ring basis for shuffle algebra and an application to group schemes. Journal of Algebra 58 (1979), 432–454. Zbl0409.16011MR540649
  38. C. Reutenauer, Free Lie Algebras. Lon. Math. Soc. Mono., New Series-7, Oxford Science Publications, 1993. Zbl0798.17001MR1231799
  39. M. Waldschmidt, Valeurs zêta multiples : une introduction. Journal de Théorie des Nombres de Bordeaux 12 no.2 (2000), 581–595. Zbl0976.11037MR1823204
  40. M. Waldschmidt, Transcendance de périodes : état des connaissances. Advances in Mathematics 1 no. 2 (2006). Proceedings of the 11th symposium of the Tunisian Mathematical Society held in Tunis, Tunisia – March 15-18, 2004. 
  41. D. Zagier, Values of zeta functions and their applications. First European congress of Mathematics, Vol.2, Birkhauser, Basel, 1994, pp.497–512. Zbl0822.11001MR1341859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.