Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien
Denis Benois; Thong Nguyen Quang Do
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 5, page 641-672
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBenois, Denis, and Nguyen Quang Do, Thong. "Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien." Annales scientifiques de l'École Normale Supérieure 35.5 (2002): 641-672. <http://eudml.org/doc/82585>.
@article{Benois2002,
author = {Benois, Denis, Nguyen Quang Do, Thong},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {5},
pages = {641-672},
publisher = {Elsevier},
title = {Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien},
url = {http://eudml.org/doc/82585},
volume = {35},
year = {2002},
}
TY - JOUR
AU - Benois, Denis
AU - Nguyen Quang Do, Thong
TI - Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 5
SP - 641
EP - 672
LA - fre
UR - http://eudml.org/doc/82585
ER -
References
top- [1] Banaszak G, Generalization of the Moore exact sequence and the wild kernel for higher K-groups, Compositio Math.86 (3) (1993) 281-305. Zbl0778.11066MR1219629
- [2] Beilinson A., Polylogarithms and cyclotomic elements, Preprint, 1990.
- [3] Belliard J.-R, Nguyen Quang Do T, Formules de classes pour les corps abéliens réels, Ann. Inst. Fourier51 (4) (2001) 903-937. Zbl1007.11063MR1849210
- [4] Belliard J.-R., Nguyen Quang Do T., Modified circular p-units and annihilation of real classes, prépublication, 2001.
- [5] Benois D., Burns D., travail en préparation.
- [6] Borel A, Cohomologie de SLn et valeurs de fonctions zêta, Ann. Scuola Norm. Sup. Pisa417 (1974) 613-636. Zbl0382.57027MR506168
- [7] Bloch S, Kato K, L-functions and Tamagawa numbers of motives, Grothendieck Festschrift1 (1990) 333-400. Zbl0768.14001MR1086888
- [8] Burns D, Flach M, Motivic L-functions and Galois module structure, Math. Ann.305 (1996) 65-102. Zbl0867.11081MR1386106
- [9] Burns D., Greither C., On the equivariant Tamagawa number conjecture for Tate motives, Preprint, 2000. Zbl1142.11076MR1992015
- [10] Beilinson A, MacPherson R, Schechtman V, Notes on motivic cohomology, Duke Math. J.54 (1987) 679-710. Zbl0632.14010MR899412
- [11] Coleman R, Local units modulo circular units, Proc. Amer. Math. Soc.89 (1983) 1-7. Zbl0528.12005MR706497
- [12] Deligne P, Le groupe fondamental de la droite projective moins trois points, in: Galois Groups Over Q, MSRI Publications, 16, Springer, 1989, pp. 79-297. Zbl0742.14022MR1012168
- [13] Dwyer W.-G, Friedlander E.M, Algebraic and etale K-theory, Trans. Amer. Math. Soc.292 (1985) 247-280. Zbl0581.14012MR805962
- [14] Flach M, A generalization of the Cassels–Tate pairing, J. Reine Angew. Math.412 (1990) 113-127. Zbl0711.14001MR1079004
- [15] Fontaine J.-M, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local ; construction d'un anneau de Barsotti–Tate, Ann. of Math.115 (1982) 529-577. Zbl0544.14016MR657238
- [16] Fontaine J.-M, Le corps des périodes p-adiques, Astérisque223 (1994) 59-102. MR1293971
- [17] Fontaine J.-M, Valeurs spéciales de fonctions L des motifs, Séminaire Bourbaki, exposé 751, Astérisque206 (1992) 205-249. Zbl0799.14006MR1206069
- [18] Fontaine J.-M, Perrin-Riou B, Autour des conjectures de Bloch et Kato ; cohomologie galoisienne et valeurs de fonctions L, in: Motives, Proc. Symp. in Pure Math., 55, 1994, pp. 599-706. Zbl0821.14013MR1265546
- [19] Gillard R, Unité cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier29 (1) (1979) 49-79. Zbl0387.12002MR526777
- [20] Greither C, Class groups of abelian fields and the main conjecture, Ann. Inst. Fourier42 (1992) 449-499. Zbl0729.11053MR1182638
- [21] Gross B.H., On the values of Artin L-functions, Preprint, 1980. MR2154331
- [22] Huber A., Kings G., Bloch–Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, Preprint, 2000. MR2002643
- [23] Huber A, Wildeshaus J, Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. J.DMV3 (1998) 27-133. Zbl0906.19004MR1643974
- [24] Kahn B, On the Lichtenbaum–Quillen conjecture, in: Algebraic K-theory and Algebraic Topology, NATO Proc. Lake Louise, 407, 1993, pp. 147-166. Zbl0885.19004MR1367295
- [25] Kato K, Lectures on the approach to Iwasawa theory for Hasse–Weil L-functions via BdR. Part I, in: Lecture Notes in Math., 1553, Springer, 1993, pp. 50-163. Zbl0815.11051MR1338860
- [26] Kato K., Lectures on the approach to Iwasawa theory for Hasse–Weil L-functions via BdR. Part II, Preprint, 1993. Zbl0815.11051MR1338860
- [27] Kolster M., Nguyen Quang Do T., Universal distribution lattices for abelian number fields, Preprint, 2000.
- [28] Kolster M, Nguyen Quang Do T, Fleckinger V, Twisted S-units, p-adic class number formulas and the Lichtenbaum conjectures, Duke Math. J.84 (1996) 679-717. Zbl0863.19003MR1408541
- [29] Kuzmin L.V, On formulae for the class number of real abelian fields, Russian Math. Izv.60 (4) (1996) 695-761. Zbl1007.11065MR1416925
- [30] Leopoldt H.-W, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math.201 (1959) 119-149. Zbl0098.03403MR108479
- [31] Lettl G, Relative Galois module structure of integers of local abelian fields, Acta Arithmetica85 (3) (1998) 235-247. Zbl0910.11050MR1627831
- [32] Milne J.S, Arithmetic Duality Theorems, Perspectives in Mathematics, 1, Academic Press, Boston, 1986. Zbl0613.14019MR881804
- [33] Neukirch J, The Beilinson conjecture for algebraic number fields, in: Beilinson's Conjectures on Special Values of L-functions, Perspectives in Math., 4, Academic Press, 1988, pp. 193-247. Zbl0651.12009MR944995
- [34] Nguyen Quang Do T, Analogues supérieurs du noyau sauvage, J. Théorie des Nombres Bordeaux4 (1992) 263-271. Zbl0783.11042MR1208865
- [35] Perrin-Riou B, Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math.115 (1994) 81-149. Zbl0838.11071MR1248080
- [36] Perrin-Riou B, Fonctions Lp-adiques, in: Proc. Int. Congress of Math., Birkhäuser Verlag, Zürich, 1995, pp. 400-410. Zbl0853.11093MR1403940
- [37] Perrin-Riou B, Systèmes d'Euler p-adiques et théorie d'Iwasawa, Annales de l'Institut Fourier48 (5) (1998) 1231-1307. Zbl0930.11078MR1662231
- [38] Schneider P, Über gewisse Galoiscohomologiegruppen, Math. Zeit.168 (1979) 181-205. Zbl0421.12024MR544704
- [39] Schneider P, Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-functions, Perspectives in Math., 4, Academic Press, 1988, pp. 1-35. Zbl0673.14007MR944989
- [40] Sinnott W, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math.62 (1981) 181-234. Zbl0465.12001MR595586
- [41] Solomon D, On a construction of p-units in abelian fields, Invent. Math.109 (1992) 329-350. Zbl0772.11043MR1172694
- [42] Soulé C, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math.55 (1979) 251-295. Zbl0437.12008MR553999
- [43] Soulé C, Régulateurs, Sém. Bourbaki (1984/85), exp. n° 644, Astérisque133–134 (1986) 237-253. Zbl0617.14008MR837223
- [44] Tate J, Relations between K2 and Galois cohomology, Invent. Math.36 (1976) 257-274. Zbl0359.12011MR429837
- [45] Tsuji T, Semi-local units modulo cyclotomic units, J. Number Theory46 (1999) 158-178. Zbl0948.11042MR1706941
- [46] Villemot L., Étude du quotient des unités semi-locales par les unités cyclotomiques dans les Zp-extensions des corps de nombres abéliens réels, thèse, Orsay, 1981. Zbl0473.12003MR627614
- [47] Washington L.C, Introduction to the Theory of Cyclotomic Fields, GTM, 85, Springer, 1982. MR718674
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.