Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien

Denis Benois; Thong Nguyen Quang Do

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 5, page 641-672
  • ISSN: 0012-9593

How to cite

top

Benois, Denis, and Nguyen Quang Do, Thong. "Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien." Annales scientifiques de l'École Normale Supérieure 35.5 (2002): 641-672. <http://eudml.org/doc/82585>.

@article{Benois2002,
author = {Benois, Denis, Nguyen Quang Do, Thong},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {5},
pages = {641-672},
publisher = {Elsevier},
title = {Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien},
url = {http://eudml.org/doc/82585},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Benois, Denis
AU - Nguyen Quang Do, Thong
TI - Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 5
SP - 641
EP - 672
LA - fre
UR - http://eudml.org/doc/82585
ER -

References

top
  1. [1] Banaszak G, Generalization of the Moore exact sequence and the wild kernel for higher K-groups, Compositio Math.86 (3) (1993) 281-305. Zbl0778.11066MR1219629
  2. [2] Beilinson A., Polylogarithms and cyclotomic elements, Preprint, 1990. 
  3. [3] Belliard J.-R, Nguyen Quang Do T, Formules de classes pour les corps abéliens réels, Ann. Inst. Fourier51 (4) (2001) 903-937. Zbl1007.11063MR1849210
  4. [4] Belliard J.-R., Nguyen Quang Do T., Modified circular p-units and annihilation of real classes, prépublication, 2001. 
  5. [5] Benois D., Burns D., travail en préparation. 
  6. [6] Borel A, Cohomologie de SLn et valeurs de fonctions zêta, Ann. Scuola Norm. Sup. Pisa417 (1974) 613-636. Zbl0382.57027MR506168
  7. [7] Bloch S, Kato K, L-functions and Tamagawa numbers of motives, Grothendieck Festschrift1 (1990) 333-400. Zbl0768.14001MR1086888
  8. [8] Burns D, Flach M, Motivic L-functions and Galois module structure, Math. Ann.305 (1996) 65-102. Zbl0867.11081MR1386106
  9. [9] Burns D., Greither C., On the equivariant Tamagawa number conjecture for Tate motives, Preprint, 2000. Zbl1142.11076MR1992015
  10. [10] Beilinson A, MacPherson R, Schechtman V, Notes on motivic cohomology, Duke Math. J.54 (1987) 679-710. Zbl0632.14010MR899412
  11. [11] Coleman R, Local units modulo circular units, Proc. Amer. Math. Soc.89 (1983) 1-7. Zbl0528.12005MR706497
  12. [12] Deligne P, Le groupe fondamental de la droite projective moins trois points, in: Galois Groups Over Q, MSRI Publications, 16, Springer, 1989, pp. 79-297. Zbl0742.14022MR1012168
  13. [13] Dwyer W.-G, Friedlander E.M, Algebraic and etale K-theory, Trans. Amer. Math. Soc.292 (1985) 247-280. Zbl0581.14012MR805962
  14. [14] Flach M, A generalization of the Cassels–Tate pairing, J. Reine Angew. Math.412 (1990) 113-127. Zbl0711.14001MR1079004
  15. [15] Fontaine J.-M, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local ; construction d'un anneau de Barsotti–Tate, Ann. of Math.115 (1982) 529-577. Zbl0544.14016MR657238
  16. [16] Fontaine J.-M, Le corps des périodes p-adiques, Astérisque223 (1994) 59-102. MR1293971
  17. [17] Fontaine J.-M, Valeurs spéciales de fonctions L des motifs, Séminaire Bourbaki, exposé 751, Astérisque206 (1992) 205-249. Zbl0799.14006MR1206069
  18. [18] Fontaine J.-M, Perrin-Riou B, Autour des conjectures de Bloch et Kato ; cohomologie galoisienne et valeurs de fonctions L, in: Motives, Proc. Symp. in Pure Math., 55, 1994, pp. 599-706. Zbl0821.14013MR1265546
  19. [19] Gillard R, Unité cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier29 (1) (1979) 49-79. Zbl0387.12002MR526777
  20. [20] Greither C, Class groups of abelian fields and the main conjecture, Ann. Inst. Fourier42 (1992) 449-499. Zbl0729.11053MR1182638
  21. [21] Gross B.H., On the values of Artin L-functions, Preprint, 1980. MR2154331
  22. [22] Huber A., Kings G., Bloch–Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, Preprint, 2000. MR2002643
  23. [23] Huber A, Wildeshaus J, Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. J.DMV3 (1998) 27-133. Zbl0906.19004MR1643974
  24. [24] Kahn B, On the Lichtenbaum–Quillen conjecture, in: Algebraic K-theory and Algebraic Topology, NATO Proc. Lake Louise, 407, 1993, pp. 147-166. Zbl0885.19004MR1367295
  25. [25] Kato K, Lectures on the approach to Iwasawa theory for Hasse–Weil L-functions via BdR. Part I, in: Lecture Notes in Math., 1553, Springer, 1993, pp. 50-163. Zbl0815.11051MR1338860
  26. [26] Kato K., Lectures on the approach to Iwasawa theory for Hasse–Weil L-functions via BdR. Part II, Preprint, 1993. Zbl0815.11051MR1338860
  27. [27] Kolster M., Nguyen Quang Do T., Universal distribution lattices for abelian number fields, Preprint, 2000. 
  28. [28] Kolster M, Nguyen Quang Do T, Fleckinger V, Twisted S-units, p-adic class number formulas and the Lichtenbaum conjectures, Duke Math. J.84 (1996) 679-717. Zbl0863.19003MR1408541
  29. [29] Kuzmin L.V, On formulae for the class number of real abelian fields, Russian Math. Izv.60 (4) (1996) 695-761. Zbl1007.11065MR1416925
  30. [30] Leopoldt H.-W, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math.201 (1959) 119-149. Zbl0098.03403MR108479
  31. [31] Lettl G, Relative Galois module structure of integers of local abelian fields, Acta Arithmetica85 (3) (1998) 235-247. Zbl0910.11050MR1627831
  32. [32] Milne J.S, Arithmetic Duality Theorems, Perspectives in Mathematics, 1, Academic Press, Boston, 1986. Zbl0613.14019MR881804
  33. [33] Neukirch J, The Beilinson conjecture for algebraic number fields, in: Beilinson's Conjectures on Special Values of L-functions, Perspectives in Math., 4, Academic Press, 1988, pp. 193-247. Zbl0651.12009MR944995
  34. [34] Nguyen Quang Do T, Analogues supérieurs du noyau sauvage, J. Théorie des Nombres Bordeaux4 (1992) 263-271. Zbl0783.11042MR1208865
  35. [35] Perrin-Riou B, Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math.115 (1994) 81-149. Zbl0838.11071MR1248080
  36. [36] Perrin-Riou B, Fonctions Lp-adiques, in: Proc. Int. Congress of Math., Birkhäuser Verlag, Zürich, 1995, pp. 400-410. Zbl0853.11093MR1403940
  37. [37] Perrin-Riou B, Systèmes d'Euler p-adiques et théorie d'Iwasawa, Annales de l'Institut Fourier48 (5) (1998) 1231-1307. Zbl0930.11078MR1662231
  38. [38] Schneider P, Über gewisse Galoiscohomologiegruppen, Math. Zeit.168 (1979) 181-205. Zbl0421.12024MR544704
  39. [39] Schneider P, Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-functions, Perspectives in Math., 4, Academic Press, 1988, pp. 1-35. Zbl0673.14007MR944989
  40. [40] Sinnott W, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math.62 (1981) 181-234. Zbl0465.12001MR595586
  41. [41] Solomon D, On a construction of p-units in abelian fields, Invent. Math.109 (1992) 329-350. Zbl0772.11043MR1172694
  42. [42] Soulé C, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math.55 (1979) 251-295. Zbl0437.12008MR553999
  43. [43] Soulé C, Régulateurs, Sém. Bourbaki (1984/85), exp. n° 644, Astérisque133–134 (1986) 237-253. Zbl0617.14008MR837223
  44. [44] Tate J, Relations between K2 and Galois cohomology, Invent. Math.36 (1976) 257-274. Zbl0359.12011MR429837
  45. [45] Tsuji T, Semi-local units modulo cyclotomic units, J. Number Theory46 (1999) 158-178. Zbl0948.11042MR1706941
  46. [46] Villemot L., Étude du quotient des unités semi-locales par les unités cyclotomiques dans les Zp-extensions des corps de nombres abéliens réels, thèse, Orsay, 1981. Zbl0473.12003MR627614
  47. [47] Washington L.C, Introduction to the Theory of Cyclotomic Fields, GTM, 85, Springer, 1982. MR718674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.