Relaxation models of phase transition flows

Philippe Helluy; Nicolas Seguin

ESAIM: Mathematical Modelling and Numerical Analysis (2006)

  • Volume: 40, Issue: 2, page 331-352
  • ISSN: 0764-583X

Abstract

top
In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid.

How to cite

top

Helluy, Philippe, and Seguin, Nicolas. "Relaxation models of phase transition flows." ESAIM: Mathematical Modelling and Numerical Analysis 40.2 (2006): 331-352. <http://eudml.org/doc/249684>.

@article{Helluy2006,
abstract = { In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid. },
author = {Helluy, Philippe, Seguin, Nicolas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite volume; entropy optimization; relaxation; phase transition; reactive flows; critical point.; relaxation finite volume scheme; convex optimization; mixture entropy},
language = {eng},
month = {6},
number = {2},
pages = {331-352},
publisher = {EDP Sciences},
title = {Relaxation models of phase transition flows},
url = {http://eudml.org/doc/249684},
volume = {40},
year = {2006},
}

TY - JOUR
AU - Helluy, Philippe
AU - Seguin, Nicolas
TI - Relaxation models of phase transition flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2006/6//
PB - EDP Sciences
VL - 40
IS - 2
SP - 331
EP - 352
AB - In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid.
LA - eng
KW - Finite volume; entropy optimization; relaxation; phase transition; reactive flows; critical point.; relaxation finite volume scheme; convex optimization; mixture entropy
UR - http://eudml.org/doc/249684
ER -

References

top
  1. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys.181 (2002) 577–616.  Zbl1169.76407
  2. T. Barberon and P. Helluy, Finite volume simulations of cavitating flows. In Finite volumes for complex applications, III (Porquerolles, 2002), Lab. Anal. Topol. Probab. CNRS, Marseille (2002) 441–448 (electronic).  Zbl1177.76207
  3. T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids34 (2005) 832–858.  Zbl1134.76392
  4. T. Barberon, P. Helluy and S. Rouy, Practical computation of axisymmetrical multifluid flows. Int. J. on Finite Volumes1 (2003) 1–34.  URIhttp://averoes.math.univ-paris13.fr/IJFV
  5. F. Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws. J. Hyper. Diff. Eqns1 (2004) 149–170.  Zbl1049.35127
  6. Y. Brenier, Averaged multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal.21 (1984) 1013–1037.  Zbl0565.65054
  7. Y. Brenier, Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes. C.R. Acad. Sci. Paris Sér. I Math.308 (1989) 587–589.  Zbl0667.65006
  8. H.B. Callen, Thermodynamics and an introduction to thermostatistics, second edition. Wiley and Sons (1985).  Zbl0989.80500
  9. F. Caro, Modélisation et simulation numérique des transitions de phase liquide-vapeur. Ph.D. thesis, École Polytechnique, Paris, France (November 2004).  
  10. G. Chanteperdrix, P. Villedieu, J.-P. Vila, A compressible model for separated two-phase flows computations. In ASME Fluids Engineering Division Summer Meeting. ASME, Montreal, Canada (July 2002).  
  11. G.Q. Chen, C. David Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math.47 (1994) 787–830.  
  12. J.-P. Croisille, Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces. Ph.D. thesis, Université Paris VI, France (1991).  
  13. S. Dellacherie, Relaxation schemes for the multicomponent Euler system. ESAIM: M2AN37 (2003) 909–936.  Zbl1070.76037
  14. L.C. Evans, Entropy and partial differential equations (2004).  URIhttp://math.berkeley.edu/~evans/entropy.and.PDE.pdf
  15. A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev.25 (1983) 35–61.  Zbl0565.65051
  16. B.T. Hayes and P.G. LeFloch, Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM J. Math. Anal.31 (2000) 941–991 (electronic).  Zbl0953.35095
  17. J.-B. Hiriart-Urruty, Optimisation et analyse convexe. Mathématiques, Presses Universitaires de France, Paris (1998).  
  18. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions, Springer-Verlag, Berlin (2001).  
  19. S. Jaouen, Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris VI (November 2001).  
  20. L. Landau and E. Lifchitz, Physique statistique. Physique théorique, Ellipses, Paris (1994).  
  21. P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, in CBMS Regional Conf. Ser. In Appl. Math. 11, Philadelphia, SIAM (1972).  
  22. P.G. LeFloch and C. Rohde, High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal.37 (2000) 2023–2060.  Zbl0959.35117
  23. R.J. LeVeque and M. Pelanti, A class of approximate Riemann solvers and their relation to relaxation schemes. J. Comput. Phys.172 (2001) 572–591.  Zbl0988.65072
  24. T.P. Liu, The Riemann problem for general systems of conservation laws. J. Differ. Equations56 (1975) 218–234.  Zbl0297.76057
  25. Y. Lucet, A fast computational algorithm for the Legendre-Fenchel transform. Comput. Optim. Appl.6 (1996) 27–57.  Zbl0852.90117
  26. Y. Lucet, Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Algorithms16 (1998) 171–185.  Zbl0909.65037
  27. P.-A. Mazet and F. Bourdel, Multidimensional case of an entropic variational formulation of conservative hyperbolic systems. Rech. Aérospatiale5 (1984) 369–378.  Zbl0598.76078
  28. R. Menikoff and B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Mod. Phys.61 (1989) 75–130.  Zbl1129.35439
  29. B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal.27 (1990) 1405–1421.  Zbl0714.76078
  30. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys.150 (1999) 425–467.  Zbl0937.76053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.