The smooth continuation method in optimal control with an application to quantum systems
Bernard Bonnard; Nataliya Shcherbakova; Dominique Sugny
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 1, page 267-292
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences 87, Control Theory and Optimization II. Springer-Verlag, Berlin, Germany (2004). Zbl1062.93001MR2062547
- [2] E.L. Allgower and K.G. Georg, Introduction to numerical continuation methods, SIAM Classics in Applied Maths 45. Society for Industrial and Applied Mathematics, Philadelphia, USA (2003). Zbl1036.65047MR2001018
- [3] D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds. J. Differential Geom.66 (2004) 377–435. Zbl1078.53073MR2106471
- [4] A.G. Bliss, Lectures on the Calculus of Variations. University of Chicago Press, Chicago, USA (1946). Zbl0063.00459MR17881
- [5] B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal [Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem]. Forum Math.5 (1993) 111–159. Zbl0779.49025MR1205250
- [6] B. Bonnard and D. Sugny, Time-minimal control of dissipative two-level quantum systems: the integrable case. SIAM J. Control Optim.48 (2009) 1289–1308. Zbl1288.81052MR2496977
- [7] B. Bonnard and D. Sugny, Geometric optimal control and two-level dissipative quantum systems. Control Cybern. (to appear). Zbl1236.49047MR2779111
- [8] B. Bonnard, L. Faubourg and E. Trélat, Mécanique céleste et contrôle des véhicules spatiaux. Springer, Berlin, Germany (2005). Zbl1104.70001
- [9] B. Bonnard, R. Dujol and J.-B. Caillau, Smooth approximations of single-input controlled Keplerian trajectories: homotopies and averaging, in Taming heterogeneity and complexity of embedded control, Proceedings of the Joint CTS-HYCON Workshop on Nonlinear and Hybrid Control, Paris, France (2006) 73–95.
- [10] B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control. ESAIM: COCV 13 (2007) 207–236. Zbl1123.49014MR2306634
- [11] B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. H. Poincaré Anal. Non Linéaire26 (2009) 1081–1098. Zbl1184.53036MR2542715
- [12] B. Bonnard, M. Chyba and D. Sugny, Time-minimal control of dissipative two-level quantum systems: the generic case. IEEE Trans. Automat. Contr.54 (2009) 2595–2610. Zbl1288.81052MR2571923
- [13] B. Bonnard, O. Cots, N. Shcherbakova and D. Sugny, The energy minimization problem for two-level dissipative quantum systems. J. Math. Phys. (to appear). Zbl1309.81118MR2742815
- [14] U. Boscain and P. Mason, Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math. Phys. 47 (2006) 062101. Zbl1112.81098MR2239948
- [15] H.-P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford University Press, London, UK (2002). Zbl1223.81001MR2012610
- [16] D. D'Alessandro, Introduction to quantum control and dynamics, Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, USA (2008). Zbl1139.81001MR2357229
- [17] M.P. do Carmo, Riemannian geometry. Birkhauser, Boston, USA (1992). Zbl0752.53001MR1138207
- [18] R. Dujol, Contribution du contrôle orbital des transferts mono-entrée en mécanique spatiale. Ph.D. Thesis, ENSEEIHT-INP, France (2006).
- [19] J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem. ESAIM: COCV 12 (2006) 294–310. Zbl1113.49032MR2209355
- [20] T. Haberkhorn, Transfert orbital avec minimisation de la consommation : résolution par homotopie différentielle. Ph.D. Thesis, ENSEEIHT-INP, France (2004).
- [21] N. Khaneja, R. Brockett and S.J. Glaser, Time optimal control of spin systems. Phys. Rev. A. 63 (2001) 032308.
- [22] N. Khaneja, S.J. Glaser and R. Brockett, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer. Phys. Rev. A (3) 65 (2002) 032301. MR1891763
- [23] D.F. Lawden, Elliptic functions and applications. Springer Verlag, New York, USA (1989). Zbl0689.33001MR1007595
- [24] H. Maurer and H.J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach. SIAM J. Control Optim.41 (2002) 380–403. Zbl1012.49018MR1920264
- [25] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. L.W. Neustadt Interscience Publishers, John Wiley & Sons, Inc., New York-London (1962). Zbl0117.31702MR166037
- [26] A. Sarychev, The index of the second variation of a control system. Math. Sbornik41 (1982) 383–401. Zbl0484.49012
- [27] T. Schulte-Herbrüggen, A.K. Spörl, R. Marx, N. Khaneja, J.M. Myers, A.F. Fahmy and S.J. Glaser, Quantum computing implemented via optimal control: Theory and application to spin and pseudo-spin systems, in Lectures on quantum information, D. Bruß and G. Leuchs Eds., Wiley-VCH (2006) 481. Zbl1135.81327
- [28] T. Vieillard, F. Chaussard, D. Sugny, B. Lavorel and O. Faucher, Field-free molecular alignment of CO2 mixtures in presence of collisional relaxation. J. Raman Spec. 39 (2008) 694.
- [29] R. Wu, A. Pechen, H. Rabitz, M. Hsieh and B. Tsou, Control landscapes for observable preparation with open quantum systems. J. Math. Phys. 49 (2008) 022108. Zbl1153.81449MR2392845