Asymptotics of accessibility sets along an abnormal trajectory

Emmanuel Trélat

ESAIM: Control, Optimisation and Calculus of Variations (2001)

  • Volume: 6, page 387-414
  • ISSN: 1292-8119

Abstract

top
We describe precisely, under generic conditions, the contact of the accessibility set at time T with an abnormal direction, first for a single-input affine control system with constraint on the control, and then as an application for a sub-riemannian system of rank 2. As a consequence we obtain in sub-riemannian geometry a new splitting-up of the sphere near an abnormal minimizer γ into two sectors, bordered by the first Pontryagin’s cone along γ , called the L -sector and the L 2 -sector. Moreover we find again necessary and sufficient conditions of optimality of an abnormal trajectory for such systems, for any optimization problem.

How to cite

top

Trélat, Emmanuel. "Asymptotics of accessibility sets along an abnormal trajectory." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 387-414. <http://eudml.org/doc/90599>.

@article{Trélat2001,
abstract = {We describe precisely, under generic conditions, the contact of the accessibility set at time $T$ with an abnormal direction, first for a single-input affine control system with constraint on the control, and then as an application for a sub-riemannian system of rank 2. As a consequence we obtain in sub-riemannian geometry a new splitting-up of the sphere near an abnormal minimizer $\gamma $ into two sectors, bordered by the first Pontryagin’s cone along $\gamma $, called the $\mathrm \{L\}^\{\infty \}$-sector and the $\mathrm \{L\}^\{2\}$-sector. Moreover we find again necessary and sufficient conditions of optimality of an abnormal trajectory for such systems, for any optimization problem.},
author = {Trélat, Emmanuel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {accessibility set; abnormal trajectory; end-point mapping; single-input affine control system; sub-riemannian geometry; accessibilty set; sub-Riemannian geometry; bounded control; normal form; spectral analytic tools},
language = {eng},
pages = {387-414},
publisher = {EDP-Sciences},
title = {Asymptotics of accessibility sets along an abnormal trajectory},
url = {http://eudml.org/doc/90599},
volume = {6},
year = {2001},
}

TY - JOUR
AU - Trélat, Emmanuel
TI - Asymptotics of accessibility sets along an abnormal trajectory
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2001
PB - EDP-Sciences
VL - 6
SP - 387
EP - 414
AB - We describe precisely, under generic conditions, the contact of the accessibility set at time $T$ with an abnormal direction, first for a single-input affine control system with constraint on the control, and then as an application for a sub-riemannian system of rank 2. As a consequence we obtain in sub-riemannian geometry a new splitting-up of the sphere near an abnormal minimizer $\gamma $ into two sectors, bordered by the first Pontryagin’s cone along $\gamma $, called the $\mathrm {L}^{\infty }$-sector and the $\mathrm {L}^{2}$-sector. Moreover we find again necessary and sufficient conditions of optimality of an abnormal trajectory for such systems, for any optimization problem.
LA - eng
KW - accessibility set; abnormal trajectory; end-point mapping; single-input affine control system; sub-riemannian geometry; accessibilty set; sub-Riemannian geometry; bounded control; normal form; spectral analytic tools
UR - http://eudml.org/doc/90599
ER -

References

top
  1. [1] A. Agrachev, Compactness for sub-Riemannian length minimizers and subanalyticity. Rend. Sem. Mat. Torino 56 (1998). Zbl1039.53038MR1845741
  2. [2] A. Agrachev, Quadratic mappings in geometric control theory. J. Soviet Math. 51 (1990) 2667-2734. Zbl1267.93035
  3. [3] A. Agrachev, Any smooth simple H 1 -local length minimizer in the Carnot–Caratheodory space is a C 0 –local length minimizer, Preprint. Labo. de Topologie, Dijon (1996). 
  4. [4] A. Agrachev and A.V. Sarychev, Strong minimality of abnormal geodesics for 2-distributions. J. Dynam. Control Systems 1 (1995) 139-176. Zbl0951.53029MR1333769
  5. [5] A. Agrachev and A.V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. H. Poincaré 13 (1996) 635-690. Zbl0866.58023MR1420493
  6. [6] A. Agrachev and A.V. Sarychev, On abnormal extremals for Lagrange variational problems. J. Math. Systems Estim. Control 8 (1998) 87-118. Zbl0826.49012MR1486492
  7. [7] G.A. Bliss, Lectures on the calculus of variations. U. of Chicago Press (1946). Zbl0063.00459MR17881
  8. [8] B. Bonnard and M. Chyba, The role of singular trajectories in control theory. Springer Verlag, Math. Monograph (to be published). Zbl1022.93003
  9. [9] B. Bonnard and I. Kupka, Théorie des singularités de l’application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal. Forum Math. 5 (1993) 111-159. Zbl0779.49025
  10. [10] B. Bonnard and I. Kupka, Generic properties of singular trajectories. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 167-186. Zbl0907.93020MR1441391
  11. [11] B. Bonnard and E. Trélat, On the role of abnormal minimizers in SR-geometry, Preprint. Labo. Topologie Dijon. Ann. Fac. Sci. Toulouse (to be published). Zbl1017.53034
  12. [12] B. Bonnard and E. Trélat, Stratification du secteur anormal dans la sphère de Martinet de petit rayon, edited by A. Isidori, F. Lamnabhi Lagarrigue and W. Respondek. Springer, Lecture Notes in Control and Inform. Sci. 259, Nonlinear Control in the Year 2000, Vol. 2. Springer (2000). MR1806137
  13. [13] H. Brezis, Analyse fonctionnelle. Masson (1993). Zbl0511.46001MR697382
  14. [14] R.L. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions. Invent. Math. 114 (1993) 435-461. Zbl0807.58007MR1240644
  15. [15] M.R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. Pacific J. Math. 1 (1951) 525-581. Zbl0045.20806MR46590
  16. [16] E.B. Lee and L. Markus, Foundations of optimal control theory. John Wiley, New York (1967). Zbl0159.13201MR220537
  17. [17] C. Lesiak and A.J. Krener, The existence and Uniqueness of Volterra Series for Nonlinear Systems. IEEE Trans. Automat. Control AC 23 (1978). Zbl0393.93009MR513980
  18. [18] W.S. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics of rank two distributions. Mem. Amer. Math. Soc. 118 (1995). Zbl0843.53038MR1303093
  19. [19] R. Montgomery, Abnormal minimizers. SIAM J. Control Optim. 32 (1997) 1605-1620. Zbl0816.49019MR1297101
  20. [20] M.A. Naimark, Linear differential operators. Frederick U. Pub. Co (1967). MR216050
  21. [21] L. Pontryagin et al., Théorie mathématique des processus optimaux. Eds Mir, Moscou (1974). MR358482
  22. [22] A.V. Sarychev, The index of the second variation of a control system. Math. USSR Sbornik 41 (1982). Zbl0484.49012
  23. [23] E. Trélat, Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dynam. Control Systems 6 (2000) 511-541. Zbl0964.49021MR1778212
  24. [24] E. Trélat, Étude asymptotique et transcendance de la fonction valeur en contrôle optimal ; catégorie log-exp dans le cas sous-Riemannien de Martinet, Ph.D. Thesis. Université de Bourgogne, Dijon, France (2000). 
  25. [25] Zhong Ge, Horizontal path space and Carnot-Caratheodory metric. Pacific J. Math. 161 (1993) 255-286. Zbl0797.49033MR1242199

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.