On weakly monotonically monolithic spaces
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 1, page 133-142
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPeng, Liang-Xue. "On weakly monotonically monolithic spaces." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 133-142. <http://eudml.org/doc/37736>.
@article{Peng2010,
abstract = {In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a $D$-space. Thus most known conclusions on $D$-spaces can be obtained by this conclusion. As a corollary, we have that if a regular space $X$ is sequential and has a point-countable $wcs^*$-network then $X$ is a $D$-space.},
author = {Peng, Liang-Xue},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$D$-space; sequential space; $wcs^*$-network; weakly monotonically monolithic space; -space; sequential space; -network; weakly monotonically monolithic space},
language = {eng},
number = {1},
pages = {133-142},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weakly monotonically monolithic spaces},
url = {http://eudml.org/doc/37736},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Peng, Liang-Xue
TI - On weakly monotonically monolithic spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 133
EP - 142
AB - In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a $D$-space. Thus most known conclusions on $D$-spaces can be obtained by this conclusion. As a corollary, we have that if a regular space $X$ is sequential and has a point-countable $wcs^*$-network then $X$ is a $D$-space.
LA - eng
KW - $D$-space; sequential space; $wcs^*$-network; weakly monotonically monolithic space; -space; sequential space; -network; weakly monotonically monolithic space
UR - http://eudml.org/doc/37736
ER -
References
top- Arhangel'skii A.V., 10.1090/S0002-9939-04-07336-8, Proc. Amer. Math. Soc. 132.7 (2004), 2163–2170. Zbl1045.54009MR2053991DOI10.1090/S0002-9939-04-07336-8
- Arhangel'skii A.V., Buzyakova R.Z., Addition theorems and D-spaces, Comment. Math. Univ. Carolin. 43.4 (2002), 653–663. Zbl1090.54017MR2045787
- Borges C.R., Wehrly A.C., A study of -spaces, Topology Proc. 16 (1991), 7–15. Zbl0787.54023MR1206448
- Burke D.K., Weak-base and -space, Comment. Math. Univ. Carolin. 48.2 (2007), 281–289. MR2338096
- Buzyakova R.Z., 10.1090/S0002-9939-04-07472-6, Proc. Amer. Math. Soc. 132.11 (2004), 3433–3439. Zbl1064.54029MR2073321DOI10.1090/S0002-9939-04-07472-6
- van Douwen E.K., Pfeffer W.F., 10.2140/pjm.1979.81.371, Pacific J. Math. 81.2 (1979), 371–377. Zbl0409.54011MR0547605DOI10.2140/pjm.1979.81.371
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
- Fleissner W.G., Stanley A.M., 10.1016/S0166-8641(00)00042-0, Topology Appl. 114.3 (2001), 261–271. Zbl0983.54024MR1838325DOI10.1016/S0166-8641(00)00042-0
- Gruenhage G., A note on -spaces, Topology Appl. 153 (2006), 229–240. Zbl1101.54029MR2238727
- Gruenhage G., Generalized metric spaces, in Handbook of Set-theoretic Topology, K. Kunen and J. Vaughan (Eds), North-Holland, Amsterdam, 1984, pp. 423–501. Zbl0794.54034MR0776629
- Gruenhage G., Michael E., Tanaka Y., 10.2140/pjm.1984.113.303, Pacific J. Math. 113.2 (1984), 303–332. Zbl0561.54016MR0749538DOI10.2140/pjm.1984.113.303
- Lin S., Point-countable Covers and Sequence-covering Mappings, Chinese Science Press, Beijing, 2002. Zbl1004.54001MR1939779
- Lin S., Liu C., 10.1016/S0166-8641(96)00043-0, Topology Appl. 74 (1996), 51–60. Zbl0869.54036MR1425925DOI10.1016/S0166-8641(96)00043-0
- Lin S., Tanaka Y., 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), 79–86. MR1293119DOI10.1016/0166-8641(94)90101-5
- Peng L.-X., 10.1016/j.topol.2006.06.003, Topology Appl. 154 (2007), 469–475. Zbl1110.54014MR2278697DOI10.1016/j.topol.2006.06.003
- Peng L.-X., A special point-countable family that makes a space to be a -space, Adv. Math. (China) 37.6 (2008), 724–728. MR2569541
- Peng L.-X., 10.1016/j.topol.2007.01.020, Topology Appl. 154 (2007), 2223–2227. Zbl1133.54012MR2328005DOI10.1016/j.topol.2007.01.020
- Steen L.A., Seebach J.A., Jr., Counterexamples in Topology, second edition, Springer, New York-Heidelberg, 1978. Zbl0386.54001MR0507446
- Tkachuk V.V., 10.1016/j.topol.2008.11.001, Topology Appl. 156 (2009), 840–846. MR2492968DOI10.1016/j.topol.2008.11.001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.