On weakly monotonically monolithic spaces

Liang-Xue Peng

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 1, page 133-142
  • ISSN: 0010-2628

Abstract

top
In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a D -space. Thus most known conclusions on D -spaces can be obtained by this conclusion. As a corollary, we have that if a regular space X is sequential and has a point-countable w c s * -network then X is a D -space.

How to cite

top

Peng, Liang-Xue. "On weakly monotonically monolithic spaces." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 133-142. <http://eudml.org/doc/37736>.

@article{Peng2010,
abstract = {In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a $D$-space. Thus most known conclusions on $D$-spaces can be obtained by this conclusion. As a corollary, we have that if a regular space $X$ is sequential and has a point-countable $wcs^*$-network then $X$ is a $D$-space.},
author = {Peng, Liang-Xue},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$D$-space; sequential space; $wcs^*$-network; weakly monotonically monolithic space; -space; sequential space; -network; weakly monotonically monolithic space},
language = {eng},
number = {1},
pages = {133-142},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weakly monotonically monolithic spaces},
url = {http://eudml.org/doc/37736},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Peng, Liang-Xue
TI - On weakly monotonically monolithic spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 133
EP - 142
AB - In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a $D$-space. Thus most known conclusions on $D$-spaces can be obtained by this conclusion. As a corollary, we have that if a regular space $X$ is sequential and has a point-countable $wcs^*$-network then $X$ is a $D$-space.
LA - eng
KW - $D$-space; sequential space; $wcs^*$-network; weakly monotonically monolithic space; -space; sequential space; -network; weakly monotonically monolithic space
UR - http://eudml.org/doc/37736
ER -

References

top
  1. Arhangel'skii A.V., 10.1090/S0002-9939-04-07336-8, Proc. Amer. Math. Soc. 132.7 (2004), 2163–2170. Zbl1045.54009MR2053991DOI10.1090/S0002-9939-04-07336-8
  2. Arhangel'skii A.V., Buzyakova R.Z., Addition theorems and D-spaces, Comment. Math. Univ. Carolin. 43.4 (2002), 653–663. Zbl1090.54017MR2045787
  3. Borges C.R., Wehrly A.C., A study of D -spaces, Topology Proc. 16 (1991), 7–15. Zbl0787.54023MR1206448
  4. Burke D.K., Weak-base and D -space, Comment. Math. Univ. Carolin. 48.2 (2007), 281–289. MR2338096
  5. Buzyakova R.Z., 10.1090/S0002-9939-04-07472-6, Proc. Amer. Math. Soc. 132.11 (2004), 3433–3439. Zbl1064.54029MR2073321DOI10.1090/S0002-9939-04-07472-6
  6. van Douwen E.K., Pfeffer W.F., 10.2140/pjm.1979.81.371, Pacific J. Math. 81.2 (1979), 371–377. Zbl0409.54011MR0547605DOI10.2140/pjm.1979.81.371
  7. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
  8. Fleissner W.G., Stanley A.M., 10.1016/S0166-8641(00)00042-0, Topology Appl. 114.3 (2001), 261–271. Zbl0983.54024MR1838325DOI10.1016/S0166-8641(00)00042-0
  9. Gruenhage G., A note on D -spaces, Topology Appl. 153 (2006), 229–240. Zbl1101.54029MR2238727
  10. Gruenhage G., Generalized metric spaces, in Handbook of Set-theoretic Topology, K. Kunen and J. Vaughan (Eds), North-Holland, Amsterdam, 1984, pp. 423–501. Zbl0794.54034MR0776629
  11. Gruenhage G., Michael E., Tanaka Y., 10.2140/pjm.1984.113.303, Pacific J. Math. 113.2 (1984), 303–332. Zbl0561.54016MR0749538DOI10.2140/pjm.1984.113.303
  12. Lin S., Point-countable Covers and Sequence-covering Mappings, Chinese Science Press, Beijing, 2002. Zbl1004.54001MR1939779
  13. Lin S., Liu C., 10.1016/S0166-8641(96)00043-0, Topology Appl. 74 (1996), 51–60. Zbl0869.54036MR1425925DOI10.1016/S0166-8641(96)00043-0
  14. Lin S., Tanaka Y., 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), 79–86. MR1293119DOI10.1016/0166-8641(94)90101-5
  15. Peng L.-X., 10.1016/j.topol.2006.06.003, Topology Appl. 154 (2007), 469–475. Zbl1110.54014MR2278697DOI10.1016/j.topol.2006.06.003
  16. Peng L.-X., A special point-countable family that makes a space to be a D -space, Adv. Math. (China) 37.6 (2008), 724–728. MR2569541
  17. Peng L.-X., 10.1016/j.topol.2007.01.020, Topology Appl. 154 (2007), 2223–2227. Zbl1133.54012MR2328005DOI10.1016/j.topol.2007.01.020
  18. Steen L.A., Seebach J.A., Jr., Counterexamples in Topology, second edition, Springer, New York-Heidelberg, 1978. Zbl0386.54001MR0507446
  19. Tkachuk V.V., 10.1016/j.topol.2008.11.001, Topology Appl. 156 (2009), 840–846. MR2492968DOI10.1016/j.topol.2008.11.001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.