A variational model in image processing with focal points
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 42, Issue: 5, page 729-748
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Ambrosio and A Braides, Functionals defined on partitions of sets of finite perimeter, I and II. J. Math. Pures. Appl.69 (1990) 285–305 and 307–333.
- L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math.43 (1990) 999–1036.
- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000).
- G. Aubert and P. Kornprobst, Mathematical problems in image processing. Partial differential equations and the calculus of variations. Springer, New York (2006).
- G. Bellettini and R. March, An image segmentation variational model with free discontinuities and contour curvature. Math. Mod. Meth. Appl. Sci.14 (2004) 1–45.
- G. Bellettini and L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional. Ann. Inst. Henri Poincaré, Anal. Non Linéaire21 (2004) 839–880.
- G. Bellettini, G. Dal Maso and M. Paolini, Semicontinuity and relaxation properties of a curvature depending functional in 2D. Ann. Scuola Norm. Sup. Pisa (4)20 (1993) 247–297.
- A. Blake and A. Zisserman, Visual Reconstruction. MIT Press, Cambridge, MA (1987).
- A. Braides, Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics. Springer-Verlag, Berlin (1998).
- A. Braides, Γ-Convergence for Beginners. Oxford University Press, Oxford (2002).
- A. Braides and A. Malchiodi, Curvature theory of boundary phases: the two-dimensional case. Interfaces Free Bound.4 (2002) 345–370.
- A. Braides and R. March, Approximation by -convergence of a curvature-depending functional in visual reconstruction. Comm. Pure Appl. Math. 59 (2006) 71–121.
- A. Braides, A. Chambolle and M. Solci, A relaxation result for energies defined on pairs set-function and applications. ESAIM: COCV13 (2007) 717–734.
- A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math.55 (1995) 827–863.
- A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional. ESAIM: M2AN33 (1999) 261–288.
- A. Chambolle and G. Dal Maso, Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM: M2AN33 (1999) 651–672.
- A. Coscia, On curvature sensitive image segmentation. Nonlin. Anal.39 (2000) 711–730.
- G. Dal Maso, An Introduction to -Convergence. Birkhäuser, Boston (1993).
- G. Dal Maso, J.M. Morel and S. Solimini, A variational method in image segmentation: existence and approximation results. Acta Math.168 (1992) 89–151.
- C. Mantegazza, Curvature varifolds with boundary. J. Diff. Geom.43 (1996) 807–843.
- R. March, Visual reconstruction with discontinuities using variational methods. Image Vis. Comput.10 (1992) 30–38.
- L. Modica and S. Mortola, Il limite nella -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5)3 (1977) 526–529.
- J.M. Morel and S. Solimimi, Variational Methods in Image Segmentation, Progress in Nonlinear Differential Equations and Their Applications14. Birkhäuser, Basel (1995).
- D. Mumford, Elastica and computer vision, in Algebraic Geometry and its Applications (West Lafayette, IN 1990), Springer, New York (1994) 491–506.
- D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math.42 (1989) 577–685.
- M. Nitzberg, D. Mumford and T. Shiota, Filtering, Segmentation and Depth, in Lecture Notes in Computer Science662, Springer-Verlag, Berlin (1993).
- M. Röger and R. Schätzle, On a modified conjecture of De Giorgi. Math. Z.254 (2006) 675–714.
- J. Shah, Uses of elliptic approximations in computer vision, in Variational Methods for Discontinuous Structures, Birkhäuser, Basel (1996) 19–34.
- J. Shah, A common framework for curve evolution, segmentation and anisotropic diffusion, in IEEE Conference on Computer Vision and Pattern Recognition, June (1996).