Characterization and representation of the lower semicontinuous envelope of the elastica functional

G. Bellettini; L. Mugnai

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 6, page 839-880
  • ISSN: 0294-1449

How to cite

top

Bellettini, G., and Mugnai, L.. "Characterization and representation of the lower semicontinuous envelope of the elastica functional." Annales de l'I.H.P. Analyse non linéaire 21.6 (2004): 839-880. <http://eudml.org/doc/78642>.

@article{Bellettini2004,
author = {Bellettini, G., Mugnai, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Semicontinuity; Curvature depending functionals; Elastica; Relaxation},
language = {eng},
number = {6},
pages = {839-880},
publisher = {Elsevier},
title = {Characterization and representation of the lower semicontinuous envelope of the elastica functional},
url = {http://eudml.org/doc/78642},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Bellettini, G.
AU - Mugnai, L.
TI - Characterization and representation of the lower semicontinuous envelope of the elastica functional
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 6
SP - 839
EP - 880
LA - eng
KW - Semicontinuity; Curvature depending functionals; Elastica; Relaxation
UR - http://eudml.org/doc/78642
ER -

References

top
  1. [1] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publication, 2000. Zbl0957.49001MR1857292
  2. [2] Ambrosio L., Mantegazza C., Curvature and distance function from a manifold, J. Geom. Anal5 (1998) 723-748. Zbl0941.53009MR1731060
  3. [3] L. Ambrosio, S. Masnou, A direct variational approach to a problem arising in image reconstruction, Interfaces and Free Boundaries, submitted for publication. Zbl1029.49037MR1959769
  4. [4] Bellettini G., Dal Maso G., Paolini M., Semicontinuity and relaxation properties of a curvature depending functional in 2D, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)20 (1993) 247-299. Zbl0797.49013MR1233638
  5. [5] G. Bellettini, L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional, Preprint Univ. Pisa, May 2003. Zbl1110.49014
  6. [6] Bellettini G., Paolini M., Variational properties of an image segmentation functional depending on contours curvature, Adv. Math. Sci. Appl5 (1995) 681-715. Zbl0853.49014MR1361011
  7. [7] Cartan H., Theorie Elementaire des Fonctions Analytiques d'Une ou Pluiseurs Variables Complexes, Hermann, 1961. Zbl0094.04401MR147623
  8. [8] Coscia A., On curvature sensitive image segmentation, Nonlin. Anal39 (2000) 711-730. Zbl0942.68135MR1733124
  9. [9] Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. Zbl0703.49001MR990890
  10. [10] Delladio S., Special generalized gauss graphs and their application to minimization of functionals involving curvatures, J. Reine Angew. Math486 (1997) 17-43. Zbl0871.49034MR1450749
  11. [11] Euler L., Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Opera OmniaI (24) (1744) 231-297. 
  12. [12] Federer H., Geometric Measure Theory, Springer-Verlag, 1969. Zbl0874.49001MR257325
  13. [13] Giaquinta M., Hildebrandt S., Calculus of Variations I, in: Grundleheren der Mathematischen Wissenschaften, vol. 310, Springer-Verlag, 1996. Zbl0853.49002MR1368401
  14. [14] De Giorgi E., Some remarks on Γ-convergence and least squares method, in: Proc. Composite Media and Homogeneization Theory, Trieste, 1991, pp. 135-142. Zbl0747.49008
  15. [15] Gonzales O., Maddocks J.H., Schuricht F., von der Mosel H., Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations14 (2002) 29-68. Zbl1006.49001MR1883599
  16. [16] Hutchinson J.E., C1,α-multiple functions regularity and tangent cone behaviour for varifolds with second fundamental form in Lp, Proc. Symp. Pure Math44 (1986) 281-306. Zbl0635.49020
  17. [17] Love A.E.H., A Treatise on the Mathematical Theory of Elasticity, Dover, 1944. Zbl0063.03651MR10851
  18. [18] Masnou S., Disocclusion: a variational approach using level lines, IEEE Trans. Image Process11 (2002) 68-76. MR1888912
  19. [19] Masnou S., Morel J.M., Level lines based disocclusion, in: Proc. ICIP'98 IEEE Internat. Conf. on Image Processing, 1998, pp. 259-263. 
  20. [20] Morel J.M., Solimini S., Variational Methods in Image Segmentation, Progress in Nonlinear Differential Equations and Their Applications, vol. 14, Birkhäuser, 1995. Zbl0827.68111MR1321598
  21. [21] Mumford D., Elastica and computer vision, in: Algebraic Geometry and its Applications, 1994, pp. 491-506. Zbl0798.53003MR1272050
  22. [22] Mumford D., Nitzberg M., Shiota T., Filtering, Segmentation and Depth, in: Lecture Notes in Computer Science, vol. 662, Springer-Verlag, 1993. Zbl0801.68171MR1226232
  23. [23] Nitzberg M., Mumford D., The 2.1-D sketch, in: Proc. of the Third Internat. Conf. on Computer Vision, Osaka, 1990. 
  24. [24] Simon L., Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom2 (1993) 281-326. Zbl0848.58012MR1243525
  25. [25] Willmore T.J., An introduction to Riemannian Geometry, Clarendon Press, 1993. Zbl0797.53002MR1261641

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.