Characterization and representation of the lower semicontinuous envelope of the elastica functional
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 6, page 839-880
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBellettini, G., and Mugnai, L.. "Characterization and representation of the lower semicontinuous envelope of the elastica functional." Annales de l'I.H.P. Analyse non linéaire 21.6 (2004): 839-880. <http://eudml.org/doc/78642>.
@article{Bellettini2004,
author = {Bellettini, G., Mugnai, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Semicontinuity; Curvature depending functionals; Elastica; Relaxation},
language = {eng},
number = {6},
pages = {839-880},
publisher = {Elsevier},
title = {Characterization and representation of the lower semicontinuous envelope of the elastica functional},
url = {http://eudml.org/doc/78642},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Bellettini, G.
AU - Mugnai, L.
TI - Characterization and representation of the lower semicontinuous envelope of the elastica functional
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 6
SP - 839
EP - 880
LA - eng
KW - Semicontinuity; Curvature depending functionals; Elastica; Relaxation
UR - http://eudml.org/doc/78642
ER -
References
top- [1] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publication, 2000. Zbl0957.49001MR1857292
- [2] Ambrosio L., Mantegazza C., Curvature and distance function from a manifold, J. Geom. Anal5 (1998) 723-748. Zbl0941.53009MR1731060
- [3] L. Ambrosio, S. Masnou, A direct variational approach to a problem arising in image reconstruction, Interfaces and Free Boundaries, submitted for publication. Zbl1029.49037MR1959769
- [4] Bellettini G., Dal Maso G., Paolini M., Semicontinuity and relaxation properties of a curvature depending functional in 2D, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)20 (1993) 247-299. Zbl0797.49013MR1233638
- [5] G. Bellettini, L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional, Preprint Univ. Pisa, May 2003. Zbl1110.49014
- [6] Bellettini G., Paolini M., Variational properties of an image segmentation functional depending on contours curvature, Adv. Math. Sci. Appl5 (1995) 681-715. Zbl0853.49014MR1361011
- [7] Cartan H., Theorie Elementaire des Fonctions Analytiques d'Une ou Pluiseurs Variables Complexes, Hermann, 1961. Zbl0094.04401MR147623
- [8] Coscia A., On curvature sensitive image segmentation, Nonlin. Anal39 (2000) 711-730. Zbl0942.68135MR1733124
- [9] Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. Zbl0703.49001MR990890
- [10] Delladio S., Special generalized gauss graphs and their application to minimization of functionals involving curvatures, J. Reine Angew. Math486 (1997) 17-43. Zbl0871.49034MR1450749
- [11] Euler L., Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Opera OmniaI (24) (1744) 231-297.
- [12] Federer H., Geometric Measure Theory, Springer-Verlag, 1969. Zbl0874.49001MR257325
- [13] Giaquinta M., Hildebrandt S., Calculus of Variations I, in: Grundleheren der Mathematischen Wissenschaften, vol. 310, Springer-Verlag, 1996. Zbl0853.49002MR1368401
- [14] De Giorgi E., Some remarks on Γ-convergence and least squares method, in: Proc. Composite Media and Homogeneization Theory, Trieste, 1991, pp. 135-142. Zbl0747.49008
- [15] Gonzales O., Maddocks J.H., Schuricht F., von der Mosel H., Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations14 (2002) 29-68. Zbl1006.49001MR1883599
- [16] Hutchinson J.E., C1,α-multiple functions regularity and tangent cone behaviour for varifolds with second fundamental form in Lp, Proc. Symp. Pure Math44 (1986) 281-306. Zbl0635.49020
- [17] Love A.E.H., A Treatise on the Mathematical Theory of Elasticity, Dover, 1944. Zbl0063.03651MR10851
- [18] Masnou S., Disocclusion: a variational approach using level lines, IEEE Trans. Image Process11 (2002) 68-76. MR1888912
- [19] Masnou S., Morel J.M., Level lines based disocclusion, in: Proc. ICIP'98 IEEE Internat. Conf. on Image Processing, 1998, pp. 259-263.
- [20] Morel J.M., Solimini S., Variational Methods in Image Segmentation, Progress in Nonlinear Differential Equations and Their Applications, vol. 14, Birkhäuser, 1995. Zbl0827.68111MR1321598
- [21] Mumford D., Elastica and computer vision, in: Algebraic Geometry and its Applications, 1994, pp. 491-506. Zbl0798.53003MR1272050
- [22] Mumford D., Nitzberg M., Shiota T., Filtering, Segmentation and Depth, in: Lecture Notes in Computer Science, vol. 662, Springer-Verlag, 1993. Zbl0801.68171MR1226232
- [23] Nitzberg M., Mumford D., The 2.1-D sketch, in: Proc. of the Third Internat. Conf. on Computer Vision, Osaka, 1990.
- [24] Simon L., Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom2 (1993) 281-326. Zbl0848.58012MR1243525
- [25] Willmore T.J., An introduction to Riemannian Geometry, Clarendon Press, 1993. Zbl0797.53002MR1261641
Citations in EuDML Documents
top- Yves van Gennip, Mark A. Peletier, The H–1-norm of tubular neighbourhoods of curves
- Yves van Gennip, Mark A. Peletier, The -norm of tubular neighbourhoods of curves
- G. Bellettini, L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional
- Simon Masnou, Jean-Michel Morel, On a variational theory of image amodal completion
- Andrea Braides, Giuseppe Riey, A variational model in image processing with focal points
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.