Free actions on semiprime rings
Muhammad Anwar Chaudhry; Mohammad S. Samman
Mathematica Bohemica (2008)
- Volume: 133, Issue: 2, page 197-208
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChaudhry, Muhammad Anwar, and Samman, Mohammad S.. "Free actions on semiprime rings." Mathematica Bohemica 133.2 (2008): 197-208. <http://eudml.org/doc/250516>.
@article{Chaudhry2008,
abstract = {We identify some situations where mappings related to left centralizers, derivations and generalized $(\alpha ,\beta )$-derivations are free actions on semiprime rings. We show that for a left centralizer, or a derivation $T$, of a semiprime ring $R$ the mapping $\psi \: R \rightarrow R$ defined by $\psi (x)=T(x) x - x T(x)$ for all $x \in R$ is a free action. We also show that for a generalized $(\alpha , \beta )$-derivation $F$ of a semiprime ring $R,$ with associated $(\alpha , \beta )$-derivation $d,$ a dependent element $a$ of $F$ is also a dependent element of $\alpha + d.$ Furthermore, we prove that for a centralizer $f$ and a derivation $d$ of a semiprime ring $R$, $\psi = d\circ f$ is a free action.},
author = {Chaudhry, Muhammad Anwar, Samman, Mohammad S.},
journal = {Mathematica Bohemica},
keywords = {prime ring; semiprime ring; dependent element; free action; centralizer; derivation; prime rings; semiprime rings; dependent elements; free actions; left centralizers; generalized derivations},
language = {eng},
number = {2},
pages = {197-208},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Free actions on semiprime rings},
url = {http://eudml.org/doc/250516},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Chaudhry, Muhammad Anwar
AU - Samman, Mohammad S.
TI - Free actions on semiprime rings
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 2
SP - 197
EP - 208
AB - We identify some situations where mappings related to left centralizers, derivations and generalized $(\alpha ,\beta )$-derivations are free actions on semiprime rings. We show that for a left centralizer, or a derivation $T$, of a semiprime ring $R$ the mapping $\psi \: R \rightarrow R$ defined by $\psi (x)=T(x) x - x T(x)$ for all $x \in R$ is a free action. We also show that for a generalized $(\alpha , \beta )$-derivation $F$ of a semiprime ring $R,$ with associated $(\alpha , \beta )$-derivation $d,$ a dependent element $a$ of $F$ is also a dependent element of $\alpha + d.$ Furthermore, we prove that for a centralizer $f$ and a derivation $d$ of a semiprime ring $R$, $\psi = d\circ f$ is a free action.
LA - eng
KW - prime ring; semiprime ring; dependent element; free action; centralizer; derivation; prime rings; semiprime rings; dependent elements; free actions; left centralizers; generalized derivations
UR - http://eudml.org/doc/250516
ER -
References
top- 10.1016/0022-1236(73)90036-0, J. Funct. Anal. 13 (1973), 277–301. (1973) MR0470685DOI10.1016/0022-1236(73)90036-0
- 10.1093/qmath/44.2.129, Quart. J. Math. Oxford 44 (1993), 129–138. (1993) MR1222369DOI10.1093/qmath/44.2.129
- On the composition of -derivations of rings, and application to von Neumann algebras, Acta Sci. Math. 56 (1992), 369–375. (1992) MR1222081
- -derivations of prime rings having power central values, Bull. Inst. Math., Acad. Sin. 23 (1995), 295–303. (1995) MR1367365
- On -derivations of semiprime rings, Demonstratio Math. 36 (2003), 283–287. (2003) MR1984339
- Special identities with -derivations, Riv. Mat. Univ. Parma 5 (1996), 109–119. (1996) Zbl0876.16025MR1456405
- Dependent elements of automorphisms of a -algebra, Proc. Japan Acad. 48 (1972), 561–565. (1972) MR0341109
- 10.2996/kmj/1138846942, Kodai Math. Sem. Rep. 26 (1974), 1–21. (1974) Zbl0296.46063MR0358362DOI10.2996/kmj/1138846942
- Les Algebres d’Operateurs dans l’Espace Hilbertien, Gauthier-Villars, Paris, 1957. (1957) Zbl0088.32304MR0094722
- Rings with involution, Univ. Chicago Press, Chicago, 1976. (1976) Zbl0343.16011MR0442017
- 10.1080/00927879808826190, Comm. Algebra 26 (1998), 1147–1166. (1998) Zbl0899.16018MR1612208DOI10.1080/00927879808826190
- 10.1215/S0012-7094-69-03693-X, Duke Math. J. 36 (1969), 781–789. (1969) Zbl0184.17101MR0256181DOI10.1215/S0012-7094-69-03693-X
- On dependent elements in semiprime rings, Math. Japonica 47 (1998), 29–31. (1998) MR1606291
- 10.2307/1968693, Ann. Math. 37 (1936), 116–229. (1936) MR1503275DOI10.2307/1968693
- 10.2307/1968823, Ann. Math. 41 (1940), 94–161. (1940) Zbl0023.13303MR0000898DOI10.2307/1968823
- Dependent elements of left centralizers of semiprime rings, Preprint. MR2467193
- Modular Theory in Operator Algebras, Abacus Press, Kent, 1981. (1981) Zbl0504.46043MR0696172
- Centralizers of semiprime rings, Comment. Math. Univ. Carolin. 42 (2001), 237–245. (2001) MR1832143
- On dependent elements in rings, Int. J. Math. Math. Sci. 53–56 (2004), 2895–2906. (2004) MR2145367
- On dependent elements and related problems in rings, Int. Math. J. 6 (2005), 93–112. (2005) Zbl1158.16309MR2146333
- 10.1017/S000497270003820X, Bull. Austral. Math. Soc. 71 (2005), 225–234. (2005) MR2133407DOI10.1017/S000497270003820X
- On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609–614. (1991) Zbl0746.16011MR1159807
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.