Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields
Patrick Ciarlet Jr.; Claire Scheid
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 44, Issue: 4, page 647-670
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCiarlet Jr., Patrick, and Scheid, Claire. "Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields." ESAIM: Mathematical Modelling and Numerical Analysis 44.4 (2010): 647-670. <http://eudml.org/doc/250760>.
@article{CiarletJr2010,
abstract = {
The electrowetting process is commonly used to handle very small amounts of liquid on a solid surface. This process can be modelled mathematically with the help of the shape optimization theory. However, solving numerically the resulting shape optimization problem is a very complex issue, even for reduced models that occur in simplified geometries. Recently, the second author obtained convincing results in the 2D axisymmetric case. In this paper, we propose and analyze a method that is suitable for the full 3D case.
},
author = {Ciarlet Jr., Patrick, Scheid, Claire},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Electrowetting; energy minimization; contact angle; error estimates; electrowetting},
language = {eng},
month = {6},
number = {4},
pages = {647-670},
publisher = {EDP Sciences},
title = {Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields},
url = {http://eudml.org/doc/250760},
volume = {44},
year = {2010},
}
TY - JOUR
AU - Ciarlet Jr., Patrick
AU - Scheid, Claire
TI - Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/6//
PB - EDP Sciences
VL - 44
IS - 4
SP - 647
EP - 670
AB -
The electrowetting process is commonly used to handle very small amounts of liquid on a solid surface. This process can be modelled mathematically with the help of the shape optimization theory. However, solving numerically the resulting shape optimization problem is a very complex issue, even for reduced models that occur in simplified geometries. Recently, the second author obtained convincing results in the 2D axisymmetric case. In this paper, we propose and analyze a method that is suitable for the full 3D case.
LA - eng
KW - Electrowetting; energy minimization; contact angle; error estimates; electrowetting
UR - http://eudml.org/doc/250760
ER -
References
top- P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Design1 (1984) 169–181.
- B. Berge, Electrocapillarité et mouillage de films isolants par l'eau. C. R. Acad. Sci. Paris Ser. II317 (1993) 157.
- S. Bouchereau, Modelling and numerical simulation of electrowetting. Ph.D. Thesis, Université Grenoble I, France (1997) [in French].
- F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Series in Computational Mathematics15. Springer-Verlag (1991).
- D. Bucur and G. Butazzo, Variational methods in shape optimization problems. Birkhaüser, Boston, USA (2005).
- J. Buehrle, S. Herminghaus and F. Mugele, Interface profile near three phase contact lines in electric fields. Phys. Rev. Lett.91 (2003) 086101.
- Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal.37 (2000) 1542–1570.
- P. Ciarlet, Jr., Augmented formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng.194 (2005) 559–586.
- P. Ciarlet, Jr. and J. He, The Singular Complement Method for 2d problems. C. R. Acad. Sci. Paris Ser. I336 (2003) 353–358.
- P. Ciarlet, Jr. and G. Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng.198 (2008) 358–365.
- P. Ciarlet, Jr., F. Lefèvre, S. Lohrengel and S. Nicaise, Weighted regularization for composite materials in electromagnetism. ESAIM: M2AN44 (2010) 75–108.
- P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysisII, P.G. Ciarlet and J.-L. Lions Eds., Elsevier, North Holland (1991) 17–351.
- M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math.93 (2002) 239–277.
- M. Costabel, M. Dauge, D. Martin and G. Vial, Weighted Regularization of Maxwell Equations – Computations in Curvilinear Polygons, in Proceedings of Enumath'01, held in Ischia, Italy (2002).
- P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Mod. Meth. Appl. Sci.7 (1997) 957–991.
- V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin, Germany (1986).
- A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, Mathematics and Applications48. Springer-Verlag (2005) [in French].
- S. Kaddouri, Solution to the electrostatic potential problem in singular (prismatic or axisymmetric) domains. A multi-scale study in quasi-singular domains. Ph.D. Thesis, École Polytechnique, France (2007) [in French].
- P. Monk, Finite Elements Methods for Maxwell's equations. Oxford Science Publications, UK (2003).
- F. Mugele and J.C. Baret, Electrowetting: From basics to applications. J. Phys., Condens. Matter17 (2005) R705–R774.
- F. Murat and J. Simon, Sur le contrôle optimal par un domaine géométrique. Publication du Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI), France (1976).
- J.-C. Nédélec, Mixed finite elements in . Numer. Math.35 (1980) 315–341.
- S. Nicaise, Polygonal interface problems. Peter Lang, Berlin, Germany (1993).
- S. Nicaise and A.-M. Sändig, General interface problems I, II. Math. Meth. Appl. Sci.17 (1994) 395–450.
- A. Papathanasiou and A. Boudouvis, A manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl. Phys. Lett.86 (2005) 164102.
- C. Quilliet and B. Berge, Electrowetting: a recent outbreak. Curr. Opin. Colloid In.6 (2001) 34–39.
- F. Rapetti, Higher order variational discretizations on simplices: applications to numerical electromagnetics. Habilitation à Diriger les Recherches, Université de Nice, France (2008) [in French].
- C. Scheid, Theoretical and numerical analysis in the vicinity of the triple point in Electrowetting. Ph.D. Thesis, Université Grenoble I, France (2007) [in French].
- C. Scheid and P. Witomski, A proof of the invariance of the contact angle in electrowetting. Math. Comp. Model.49 (2009) 647–665.
- T. Sorokina and A.J. Worsey, A multivariate Powell-Sabin interpolant. Adv. Comput. Math.29 (2008) 71–89.
- M. Vallet, M. Vallade and B. Berge, Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur. Phys. J. B.11 (1999) 583.
- H. Verheijen and M. Prins, Reversible electrowetting and trapping of charge: model and experiments. Langmuir15 (1999) 6616.
- A.J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant. Comp. Aided Geom. Design5 (1988) 177–186.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.