Page 1

Displaying 1 – 9 of 9

Showing per page

A Global Stochastic Optimization Method for Large Scale Problems

W. El Alem, A. El Hami, R. Ellaia (2010)

Mathematical Modelling of Natural Phenomena

In this paper, a new hybrid simulated annealing algorithm for constrained global optimization is proposed. We have developed a stochastic algorithm called ASAPSPSA that uses Adaptive Simulated Annealing algorithm (ASA). ASA is a series of modifications to the basic simulated annealing algorithm (SA) that gives the region containing the global solution of an objective function. In addition, Simultaneous Perturbation Stochastic Approximation (SPSA)...

An effective global path planning algorithm with teaching-learning-based optimization

Emad Hazrati Nejad, Sevgi Yigit-Sert, Sahin Emrah Amrahov (2024)

Kybernetika

Due to the widespread use of mobile robots in various applications, the path planning problem has emerged as one of the important research topics. Path planning is defined as finding the shortest path starting from the initial point to the destination in such a way as to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a static environment with obstacles. The proposed...

Bilevel Approach of a Decomposed Topology Optimization Problem

A. Makrizi, B. Radi (2010)

Mathematical Modelling of Natural Phenomena

In topology optimization problems, we are often forced to deal with large-scale numerical problems, so that the domain decomposition method occurs naturally. Consider a typical topology optimization problem, the minimum compliance problem of a linear isotropic elastic continuum structure, in which the constraints are the partial differential equations of linear elasticity. We subdivide the partial differential equations into two subproblems posed...

Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields

Patrick Ciarlet Jr., Claire Scheid (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The electrowetting process is commonly used to handle very small amounts of liquid on a solid surface. This process can be modelled mathematically with the help of the shape optimization theory. However, solving numerically the resulting shape optimization problem is a very complex issue, even for reduced models that occur in simplified geometries. Recently, the second author obtained convincing results in the 2D axisymmetric case. In this paper, we propose and analyze a method that is suitable...

PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages

Fredi Tröltzsch, Irwin Yousept (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...

PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages

Fredi Tröltzsch, Irwin Yousept (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...

Time domain decomposition in final value optimal control of the Maxwell system

John E. Lagnese, G. Leugering (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...

Time Domain Decomposition in Final Value Optimal Control of the Maxwell System

John E. Lagnese, G. Leugering (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...

Currently displaying 1 – 9 of 9

Page 1