Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics
Mireille Bossy; Nicolas Champagnat; Sylvain Maire; Denis Talay
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 44, Issue: 5, page 997-1048
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBossy, Mireille, et al. "Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics." ESAIM: Mathematical Modelling and Numerical Analysis 44.5 (2010): 997-1048. <http://eudml.org/doc/250790>.
@article{Bossy2010,
abstract = {
Motivated by the development of efficient Monte Carlo methods
for PDE models in molecular dynamics,
we establish a new probabilistic interpretation of a family of divergence form
operators with discontinuous coefficients at the interface
of two open subsets of $\mathbb\{R\}^d$. This family of operators includes the case of the
linearized Poisson-Boltzmann equation used to
compute the electrostatic free energy of a molecule.
More precisely, we explicitly construct a Markov process whose
infinitesimal generator belongs to this family, as the solution of a SDE
including a non standard local time term related to the interface
of discontinuity. We then prove an extended
Feynman-Kac formula for the Poisson-Boltzmann equation.
This formula allows us to justify
various probabilistic numerical methods to
approximate the free energy of a molecule.
We analyse the convergence rate of these simulation procedures and
numerically compare them on idealized molecules models.
},
author = {Bossy, Mireille, Champagnat, Nicolas, Maire, Sylvain, Talay, Denis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Divergence form operator; Poisson-Boltzmann equation;
Feynman-Kac formula; random walk on sphere algorithm; divergence form operator; Feyman-Kac formula; random walk on sphere},
language = {eng},
month = {8},
number = {5},
pages = {997-1048},
publisher = {EDP Sciences},
title = {Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics},
url = {http://eudml.org/doc/250790},
volume = {44},
year = {2010},
}
TY - JOUR
AU - Bossy, Mireille
AU - Champagnat, Nicolas
AU - Maire, Sylvain
AU - Talay, Denis
TI - Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/8//
PB - EDP Sciences
VL - 44
IS - 5
SP - 997
EP - 1048
AB -
Motivated by the development of efficient Monte Carlo methods
for PDE models in molecular dynamics,
we establish a new probabilistic interpretation of a family of divergence form
operators with discontinuous coefficients at the interface
of two open subsets of $\mathbb{R}^d$. This family of operators includes the case of the
linearized Poisson-Boltzmann equation used to
compute the electrostatic free energy of a molecule.
More precisely, we explicitly construct a Markov process whose
infinitesimal generator belongs to this family, as the solution of a SDE
including a non standard local time term related to the interface
of discontinuity. We then prove an extended
Feynman-Kac formula for the Poisson-Boltzmann equation.
This formula allows us to justify
various probabilistic numerical methods to
approximate the free energy of a molecule.
We analyse the convergence rate of these simulation procedures and
numerically compare them on idealized molecules models.
LA - eng
KW - Divergence form operator; Poisson-Boltzmann equation;
Feynman-Kac formula; random walk on sphere algorithm; divergence form operator; Feyman-Kac formula; random walk on sphere
UR - http://eudml.org/doc/250790
ER -
References
top- D.G. Aronson, Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc.73 (1967) 890–896.
- N.A. Baker, D. Sept, M.J. Holst and J.A. McCammon, The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers. IBM J. Res. Dev.45 (2001) 427–437.
- N.A. Baker, D. Bashford and D.A. Case, Implicit solvent electrostatics in biomolecular simulation, in New algorithms for macromolecular simulation, Lect. Notes Comput. Sci. Eng.49, Springer, Berlin (2005) 263–295.
- A.N. Borodin and P. Salminen, Handbook of Brownian motion-facts and formulae. Probability and its Applications, 2nd edition, Birkhäuser Verlag, Basel (2002).
- H. Brezis, Analyse fonctionnelle : Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983).
- R. Dautray and J.-L. Lions, Evolution problems II, Mathematical analysis and numerical methods for science and technology6. Springer-Verlag, Berlin (1993).
- S.N. Ethier and T.G. Kurtz, Markov processes – Characterization and convergence. Wiley Series in Probability and Mathematical Statistics, Probability and Mathematical Statistics, John Wiley & Sons Inc., New York (1986).
- M. Fukushima, Y. Ōshima and M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics19. Walter de Gruyter & Co., Berlin (1994).
- D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics, Reprint of the 1998 edition, Springer-Verlag, Berlin (2001).
- N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library24. Second edition, North-Holland Publishing Co., Amsterdam (1989).
- I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics113. Second edition, Springer-Verlag, New York (1991).
- O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press, New York (1968).
- B. Lapeyre, É. Pardoux and R. Sentis, Introduction to Monte-Carlo methods for transport and diffusion equations, Oxford Texts in Applied and Engineering Mathematics6. Oxford University Press, Oxford (2003).
- J.-F. Le Gall, One-dimensional stochastic differential equations involving the local times of the unknown process, in Stochastic analysis and applications (Swansea, 1983), Lecture Notes Math.1095, Springer, Berlin (1984) 51–82.
- A. Lejay, Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme divergence : Cas linéaires et semi-linéaires. Ph.D. Thesis, Université de Provence, Marseille, France (2000).
- A. Lejay and S. Maire, Simulating diffusions with piecewise constant coefficients using a kinetic approximation. Comput. Meth. Appl. Mech. Eng.199 (2010) 2014–2023.
- A. Lejay and M. Martinez, A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab.16 (2006) 107–139.
- N. Limić, Markov jump processes approximating a nonsymmetric generalized diffusion. Preprint, arXiv:0804.0848v4 (2008).
- S. Maire, Réduction de variance pour l'intégration numérique et pour le calcul critique en transport neutronique. Ph.D. Thesis, Université de Toulon et du Var, France (2001).
- S. Maire and D. Talay, On a Monte Carlo method for neutron transport criticality computations. IMA J. Numer. Anal.26 (2006) 657–685.
- M. Martinez, Interprétations probabilistes d'opérateurs sous forme divergence et analyse des méthodes numériques probabilistes associées. Ph.D. Thesis, Université de Provence, Marseille, France (2004).
- M. Martinez and D. Talay, Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu. C. R. Math. Acad. Sci. Paris342 (2006) 51–56.
- M. Mascagni and N.A. Simonov, Monte Carlo methods for calculating some physical properties of large molecules. SIAM J. Sci. Comput.26 (2004) 339–357.
- N.I. Portenko, Diffusion processes with a generalized drift coefficient. Teor. Veroyatnost. i Primenen.24 (1979) 62–77.
- N.I. Portenko, Stochastic differential equations with a generalized drift vector. Teor. Veroyatnost. i Primenen.24 (1979) 332–347.
- P.E. Protter, Stochastic integration and differential equations – Second edition, Version 2.1, Stochastic Modelling and Applied Probability21. Corrected third printing, Springer-Verlag, Berlin (2005).
- D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften293. Springer-Verlag, Berlin (1991).
- L.C.G. Rogers and D. Williams, Foundations, Diffusions, Markov processes, and martingales1. Reprint of the second edition (1994), Cambridge Mathematical Library, Cambridge University Press, Cambridge (2000).
- L.C.G. Rogers and D. Williams, Itô calculus, Diffusions, Markov processes, and martingales2. Reprint of the second edition (1994), Cambridge Mathematical Library, Cambridge University Press, Cambridge (2000).
- A. Rozkosz and L. Słomiński, Extended convergence of Dirichlet processes. Stochastics Stochastics Rep.65 (1998) 79–109.
- K.K. Sabelfeld, Monte Carlo methods in boundary value problems. Springer Series in Computational Physics, Springer-Verlag, Berlin (1991).
- K.K. Sabelfeld and D. Talay, Integral formulation of the boundary value problems and the method of random walk on spheres. Monte Carlo Meth. Appl.1 (1995) 1–34.
- N.A. Simonov, Walk-on-spheres algorithm for solving boundary-value problems with continuity flux conditions, in Monte Carlo and quasi-Monte Carlo methods2006, Springer, Berlin (2008) 633–643.
- N.A. Simonov, M. Mascagni and M.O. Fenley, Monte Carlo-based linear Poisson-Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible. J. Chem. Phys.127 (2007) 185105.
- D.W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, in Séminaire de Probabilités, XXII, Lecture Notes in Math.1321, Springer, Berlin (1988) 316–347.
- D.W. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften233. Springer-Verlag, Berlin (1979).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.