Compactification of the moduli space of principally polarized abelian varieties

Michel Brion

Séminaire Bourbaki (2005-2006)

  • Volume: 48, page 1-32
  • ISSN: 0303-1179

Abstract

top
The coarse moduli space of principally polarized abelian varieties may be compactified in several ways, via the Satake compactification or the toroidal compactifications. This raises the problem of finding a “modular” compactification of this moduli space in terms of geometric objects that describe the boundary points. One also seeks a compactification of the Torelli morphism that associates with every nonsingular projective curve its jacobian. The talk presents the solution of these problems by V. Alexeev, based on work of Mumford, Faltings-Chai, Nakamura, and Namikawa.

How to cite

top

Brion, Michel. "Compactification de l’espace des modules des variétés abéliennes principalement polarisées." Séminaire Bourbaki 48 (2005-2006): 1-32. <http://eudml.org/doc/252152>.

@article{Brion2005-2006,
abstract = {Les variétés abéliennes principalement polarisées admettent un espace des modules grossier qu’on sait compactifier de plusieurs façons (compactification de Satake, compactifications toroïdales). Cependant, le problème s’est posé de construire une compactification “modulaire”en termes d’objets géométriques qui permettent de décrire les points du bord. On souhaite aussi compactifier l’application de Torelli qui à chaque courbe algébrique, projective et lisse, associe sa jacobienne. L’exposé présente la solution de ces problèmes par V. Alexeev, à la suite de travaux de Mumford, Faltings–Chai, Nakamura et Namikawa.},
author = {Brion, Michel},
journal = {Séminaire Bourbaki},
keywords = {abelian variety; principal polarization; coarse moduli space; semi-abelian variety; toric variety; Delaunay and Voronoi decompositions; compactified jacobians},
language = {fre},
pages = {1-32},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Compactification de l’espace des modules des variétés abéliennes principalement polarisées},
url = {http://eudml.org/doc/252152},
volume = {48},
year = {2005-2006},
}

TY - JOUR
AU - Brion, Michel
TI - Compactification de l’espace des modules des variétés abéliennes principalement polarisées
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 1
EP - 32
AB - Les variétés abéliennes principalement polarisées admettent un espace des modules grossier qu’on sait compactifier de plusieurs façons (compactification de Satake, compactifications toroïdales). Cependant, le problème s’est posé de construire une compactification “modulaire”en termes d’objets géométriques qui permettent de décrire les points du bord. On souhaite aussi compactifier l’application de Torelli qui à chaque courbe algébrique, projective et lisse, associe sa jacobienne. L’exposé présente la solution de ces problèmes par V. Alexeev, à la suite de travaux de Mumford, Faltings–Chai, Nakamura et Namikawa.
LA - fre
KW - abelian variety; principal polarization; coarse moduli space; semi-abelian variety; toric variety; Delaunay and Voronoi decompositions; compactified jacobians
UR - http://eudml.org/doc/252152
ER -

References

top
  1. [1] V. Alexeev – “Log canonical singularities and complete moduli of stable pairs”, arXiv : alg-geom/9608013. 
  2. [2] —, “On extra components in the functorial compactification of A g ”, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, p. 1–9. Zbl1058.14061MR1827015
  3. [3] —, “Complete moduli in the presence of semiabelian group action”, Ann. of Math. (2) 155 (2002), no. 3, p. 611–708. Zbl1052.14017MR1923963
  4. [4] —, “Compactified Jacobians and Torelli map”, Publ. Res. Inst. Math. Sci. 40 (2004), no. 4, p. 1241–1265. Zbl1079.14019MR2105707
  5. [5] V. Alexeev & I. Nakamura – “On Mumford’s construction of degenerating abelian varieties”, Tohoku Math. J. (2) 51 (1999), no. 3, p. 399–420. Zbl0989.14003MR1707764
  6. [6] A. Ash, D. Mumford, M. Rapoport & Y. Tai – Smooth compactification of locally symmetric varieties, Math. Sci. Press, Brookline, Mass., 1975, Lie Groups : History, Frontiers and Applications, vol. IV. Zbl0334.14007MR457437
  7. [7] S. Bosch, W. Lütkebohmert & M. Raynaud – Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 21, Springer-Verlag, Berlin, 1990. Zbl0705.14001
  8. [8] G. Faltings & C.-L. Chai – Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 22, Springer-Verlag, Berlin, 1990, avec un appendice de D. Mumford. Zbl0744.14031MR1083353
  9. [9] R. Hartshorne – Algebraic geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  10. [10] S. Keel & S. Mori – “Quotients by groupoids”, Ann. of Math. (2) 145 (1997), no. 1, p. 193–213. Zbl0881.14018MR1432041
  11. [11] J. Kollár & N. I. Shepherd-Barron – “Threefolds and deformations of surface singularities”, Invent. Math. 91 (1988), no. 2, p. 299–338. Zbl0642.14008MR922803
  12. [12] G. Laumon & L. Moret-Bailly – Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 39, Springer-Verlag, Berlin, 2000. Zbl0945.14005MR1771927
  13. [13] D. Mumford – Abelian varieties, Oxford University Press, Oxford, 1970. Zbl0583.14015MR282985
  14. [14] —, “An analytic construction of degenerating abelian varieties over complete rings”, Compositio Math.24 (1972), p. 239–272. Zbl0241.14020MR352106
  15. [15] D. Mumford, J. Fogarty & F. Kirwan – Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, Springer-Verlag, Berlin, 1994, 3e édition. Zbl0797.14004MR1304906
  16. [16] I. Nakamura – “On moduli of stable quasi abelian varieties”, Nagoya Math. J.58 (1975), p. 149–214. Zbl0295.14018MR393049
  17. [17] —, “Stability of degenerate abelian varieties”, Invent. Math. 136 (1999), no. 3, p. 659–715. Zbl0982.14026MR1695209
  18. [18] Y. Namikawa – “A new compactification of the Siegel space and degeneration of Abelian varieties I& II”, Math. Ann. 221 (1976), no. 2, p. 97–141, pp. 201–241. Zbl0327.14013MR480537
  19. [19] —, Toroidal compactification of Siegel spaces, Lect. Notes in Math., vol. 812, Springer, Berlin, 1980. Zbl0466.14011MR584625
  20. [20] T. Oda & C. S. Seshadri – “Compactifications of the generalized Jacobian variety”, Trans. Amer. Math. Soc.253 (1979), p. 1–90. Zbl0418.14019MR536936
  21. [21] M. C. Olsson – “Canonical compactifications of moduli spaces for abelian varieties”, http://www.ma.utexas.edu/~molsson/. 
  22. [22] M. Raynaud – “Spécialisation du foncteur de Picard”, Publ. Math. Inst. Hautes Études Sci. (1970), no. 38, p. 27–76. Zbl0207.51602MR282993
  23. [23] —, “Compactification du module des courbes”, in Séminaire Bourbaki (1970/1971), Lect. Notes in Math., vol. 244, Springer, Berlin, 1971, exp. no. 385, p. 47–61. Zbl0247.14007MR437542
  24. [24] C. Traverso – “Seminormality and Picard group”, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), p. 585–595. Zbl0205.50501MR277542

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.