The equilibrium measure of an endomorphism of k ( )

Xavier Buff

Séminaire Bourbaki (2004-2005)

  • Volume: 47, page 33-70
  • ISSN: 0303-1179

Abstract

top
Let f be a holomorphic endomorphism of k ( ) . I will present a geometric construction, due to Briend and Duval, of a probability measure μ having the following properties: μ reflects the distribution of preimages of points outside an algebraic exceptional set, repelling periodic points of f equidistribute with respect to μ and μ is the unique measure of maximal entropy of f .

How to cite

top

Buff, Xavier. "La mesure d’équilibre d’un endomorphisme de $\mathbb {P}^k(\mathbb {C})$." Séminaire Bourbaki 47 (2004-2005): 33-70. <http://eudml.org/doc/252174>.

@article{Buff2004-2005,
abstract = {Soit $f$ un endomorphisme holomorphe de $\mathbb \{P\}^k(\mathbb \{C\})$. Je présenterai une construction géométrique, due à Briend et Duval, d’une mesure de probabilité $\mu $ ayant les propriétés suivantes : $\mu $ reflète la distribution des préimages des points en dehors d’un ensemble exceptionnel algébrique, les points périodiques répulsifs de $f$ s’équidistribuent par rapport à $\mu $ et $\mu $ est l’unique mesure d’entropie maximale de $f$.},
author = {Buff, Xavier},
journal = {Séminaire Bourbaki},
keywords = {holomorphic dynamics; equilibrium measure; exceptional set; entropy},
language = {fre},
pages = {33-70},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {La mesure d’équilibre d’un endomorphisme de $\mathbb \{P\}^k(\mathbb \{C\})$},
url = {http://eudml.org/doc/252174},
volume = {47},
year = {2004-2005},
}

TY - JOUR
AU - Buff, Xavier
TI - La mesure d’équilibre d’un endomorphisme de $\mathbb {P}^k(\mathbb {C})$
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 33
EP - 70
AB - Soit $f$ un endomorphisme holomorphe de $\mathbb {P}^k(\mathbb {C})$. Je présenterai une construction géométrique, due à Briend et Duval, d’une mesure de probabilité $\mu $ ayant les propriétés suivantes : $\mu $ reflète la distribution des préimages des points en dehors d’un ensemble exceptionnel algébrique, les points périodiques répulsifs de $f$ s’équidistribuent par rapport à $\mu $ et $\mu $ est l’unique mesure d’entropie maximale de $f$.
LA - fre
KW - holomorphic dynamics; equilibrium measure; exceptional set; entropy
UR - http://eudml.org/doc/252174
ER -

References

top
  1. [1] E. Bedford, M. Lyubich & J. Smillie – “Polynomial diffeomorphisms of 𝐂 2 (V), The measure of maximal entropy and laminar currents”, Invent. Math.112 (1993), p. 77–125. Zbl0792.58034MR1207478
  2. [2] E. Bedford & J. Smillie – “Polynomial diffeomorphisms of 𝐂 2 : Currents, equilibrium measure and hyperbolicity”, Invent. Math.87 (1990), p. 69–99. Zbl0721.58037MR1079840
  3. [3] —, “Polynomial diffeomorphisms of 𝐂 2 (III)”, Math. Ann.294 (1992), p. 395–420. MR1188127
  4. [4] E. Bedford & B. Taylor – “A new capacity for plurisubharmonic functions”, Acta Math.149 (1982), p. 1–39. Zbl0547.32012MR674165
  5. [5] J.-Y. Briend, S. Cantat & M. Shishikura – “Linearity of the exceptional set for maps of k ( ) ”, Math. Ann.330 (2004), p. 39–43. Zbl1056.32018MR2091677
  6. [6] J.-Y. Briend & J. Duval – “Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de ℂℙ k ”, Acta Math.182 (1999), p. 143–157. Zbl1144.37436MR1710180
  7. [7] —, “Deux caractérisations de la mesure d’équilibre d’un endomorphisme de k ( ) ”, Publ. Math. Inst. Hautes Études Sci.93 (2001), p. 145–159. Zbl1010.37004
  8. [8] M. Brin & A. Katok – “On local entropy”, in Geometric dynamics, Lect. Notes in Math., vol. 1007, Springer-Verlag, 1983, p. 30–38. Zbl0533.58020MR730261
  9. [9] H. Brolin – “Invariant sets under iteration of rational functions”, Ark. Mat. 6 (1065), p. 103–144. Zbl0127.03401MR194595
  10. [10] T.-C. Dinh & N. Sibony – “Dynamique des applications d’allure polynomiale”, J. Math. Pures Appl.82 (2003), p. 367–423. Zbl1033.37023MR1992375
  11. [11] —, “Distribution des valeurs de transformations méromorphes et applications”, Comment. Math. Helv. 81 (2006), no. 1, p. 221–258. Zbl1094.32005MR2208805
  12. [12] J.E. Fornæss & N. Sibony – “Complex dynamics in higher dimension”, in Complex potential theory (Montreal, PQ, 1993), NATO Adv. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Press, Dordrecht, 1994, Notes partially written by Estela A. Gavosto, p. 131–186. Zbl0811.32019MR1332961
  13. [13] —, “Complex dynamics in higher dimension I”, in Complex analytic methods in dynamical systems (IMPA, janvier 1992), Astérisque, vol. 222, 1994, p. 201–231. MR1285389
  14. [14] —, “Complex dynamics in higher dimension, II”, in Modern Methods in Complex Analysis (Princeton, NJ, 1992), Ann. Math. Studies, vol. 137, Princeton University Press, Princeton, NJ, 1995, p. 135–187. Zbl0847.58059MR1369137
  15. [15] —, “Dynamics of 𝐏 2 (Examples)”, in Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), Contemp. Math., vol. 269, Providence, RI, 2001, p. 47–85. Zbl1006.37025MR1810536
  16. [16] A. Freire, A. Lopez & R. Mañe – “An invariant measure for rational maps”, Bol. Soc. Brasil. Mat.14 (1983), p. 45–62. Zbl0568.58027MR736568
  17. [17] M. Gromov – “On the entropy of holomorphic maps”, 49 (2003), p. 217–235, Manuscrit 1977. Zbl1080.37051MR2026895
  18. [18] V. Guedj – “Ergodic properties of rational mappings with large topological degree”, Ann. of Math. (2) 161 (2005), no. 3, p. 1589–1607. Zbl1088.37020MR2179389
  19. [19] J.H. Hubbard & P. Papadopol – “Supperattractive fixed points in n ”, Indiana Univ. Math. J.43 (1994), p. 321–365. Zbl0858.32023MR1275463
  20. [20] P. Lelong – “Propriétés métriques des variétés analytiques complexes définies par une équation”, 67 (1950), p. 393–419. Zbl0039.08804MR47789
  21. [21] M. Lyubich – “Entropy properties of rational endomorphisms of the Riemann sphere”, Ergodic Theory Dynamical Systems3 (1983), p. 351–385. Zbl0537.58035MR741393
  22. [22] R. Mañe – “On the uniqueness of the maximizing measure for rational maps”, Bol. Soc. Brasil. Mat.14 (1983), p. 27–43. Zbl0568.58028MR736567
  23. [23] M. Misiurewicz & F. Przytycki – “Topological entropy and degree of smooth mappings”, 25 (1977), p. 573–574. Zbl0362.54037MR458501
  24. [24] W. Parry – Entropy and generators in ergodic theory, Benjamin Press, 1969. Zbl0175.34001MR262464
  25. [25] N. Sibony – “Dynamique des applications rationnelles de 𝐏 k ”, in Dynamique et géométrie complexes (Lyon, 1997), vol. 8, Paris, 1999, p. 97–185. Zbl1020.37026MR1760844
  26. [26] P. Tortrat – “Aspects potentialistes de l’itération des polynômes”, in Differential geometry and differential equations (C. Gu, M. Berger & R.L. Bryant, éds.), Lect. Notes in Math., vol. 1255, Springer, 1987, p. 195–209. Zbl0672.31003MR1052425
  27. [27] T. Ueda – “Fatou sets in complex dynamics on projective spaces”, J. Math. Soc. Japan 46 (1994), no. 3, p. 545–555. Zbl0829.58025MR1276837

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.