The equilibrium measure of an endomorphism of
Séminaire Bourbaki (2004-2005)
- Volume: 47, page 33-70
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topBuff, Xavier. "La mesure d’équilibre d’un endomorphisme de $\mathbb {P}^k(\mathbb {C})$." Séminaire Bourbaki 47 (2004-2005): 33-70. <http://eudml.org/doc/252174>.
@article{Buff2004-2005,
abstract = {Soit $f$ un endomorphisme holomorphe de $\mathbb \{P\}^k(\mathbb \{C\})$. Je présenterai une construction géométrique, due à Briend et Duval, d’une mesure de probabilité $\mu $ ayant les propriétés suivantes : $\mu $ reflète la distribution des préimages des points en dehors d’un ensemble exceptionnel algébrique, les points périodiques répulsifs de $f$ s’équidistribuent par rapport à $\mu $ et $\mu $ est l’unique mesure d’entropie maximale de $f$.},
author = {Buff, Xavier},
journal = {Séminaire Bourbaki},
keywords = {holomorphic dynamics; equilibrium measure; exceptional set; entropy},
language = {fre},
pages = {33-70},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {La mesure d’équilibre d’un endomorphisme de $\mathbb \{P\}^k(\mathbb \{C\})$},
url = {http://eudml.org/doc/252174},
volume = {47},
year = {2004-2005},
}
TY - JOUR
AU - Buff, Xavier
TI - La mesure d’équilibre d’un endomorphisme de $\mathbb {P}^k(\mathbb {C})$
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 33
EP - 70
AB - Soit $f$ un endomorphisme holomorphe de $\mathbb {P}^k(\mathbb {C})$. Je présenterai une construction géométrique, due à Briend et Duval, d’une mesure de probabilité $\mu $ ayant les propriétés suivantes : $\mu $ reflète la distribution des préimages des points en dehors d’un ensemble exceptionnel algébrique, les points périodiques répulsifs de $f$ s’équidistribuent par rapport à $\mu $ et $\mu $ est l’unique mesure d’entropie maximale de $f$.
LA - fre
KW - holomorphic dynamics; equilibrium measure; exceptional set; entropy
UR - http://eudml.org/doc/252174
ER -
References
top- [1] E. Bedford, M. Lyubich & J. Smillie – “Polynomial diffeomorphisms of (V), The measure of maximal entropy and laminar currents”, Invent. Math.112 (1993), p. 77–125. Zbl0792.58034MR1207478
- [2] E. Bedford & J. Smillie – “Polynomial diffeomorphisms of : Currents, equilibrium measure and hyperbolicity”, Invent. Math.87 (1990), p. 69–99. Zbl0721.58037MR1079840
- [3] —, “Polynomial diffeomorphisms of (III)”, Math. Ann.294 (1992), p. 395–420. MR1188127
- [4] E. Bedford & B. Taylor – “A new capacity for plurisubharmonic functions”, Acta Math.149 (1982), p. 1–39. Zbl0547.32012MR674165
- [5] J.-Y. Briend, S. Cantat & M. Shishikura – “Linearity of the exceptional set for maps of ”, Math. Ann.330 (2004), p. 39–43. Zbl1056.32018MR2091677
- [6] J.-Y. Briend & J. Duval – “Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de ”, Acta Math.182 (1999), p. 143–157. Zbl1144.37436MR1710180
- [7] —, “Deux caractérisations de la mesure d’équilibre d’un endomorphisme de ”, Publ. Math. Inst. Hautes Études Sci.93 (2001), p. 145–159. Zbl1010.37004
- [8] M. Brin & A. Katok – “On local entropy”, in Geometric dynamics, Lect. Notes in Math., vol. 1007, Springer-Verlag, 1983, p. 30–38. Zbl0533.58020MR730261
- [9] H. Brolin – “Invariant sets under iteration of rational functions”, Ark. Mat. 6 (1065), p. 103–144. Zbl0127.03401MR194595
- [10] T.-C. Dinh & N. Sibony – “Dynamique des applications d’allure polynomiale”, J. Math. Pures Appl.82 (2003), p. 367–423. Zbl1033.37023MR1992375
- [11] —, “Distribution des valeurs de transformations méromorphes et applications”, Comment. Math. Helv. 81 (2006), no. 1, p. 221–258. Zbl1094.32005MR2208805
- [12] J.E. Fornæss & N. Sibony – “Complex dynamics in higher dimension”, in Complex potential theory (Montreal, PQ, 1993), NATO Adv. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Press, Dordrecht, 1994, Notes partially written by Estela A. Gavosto, p. 131–186. Zbl0811.32019MR1332961
- [13] —, “Complex dynamics in higher dimension I”, in Complex analytic methods in dynamical systems (IMPA, janvier 1992), Astérisque, vol. 222, 1994, p. 201–231. MR1285389
- [14] —, “Complex dynamics in higher dimension, II”, in Modern Methods in Complex Analysis (Princeton, NJ, 1992), Ann. Math. Studies, vol. 137, Princeton University Press, Princeton, NJ, 1995, p. 135–187. Zbl0847.58059MR1369137
- [15] —, “Dynamics of (Examples)”, in Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), Contemp. Math., vol. 269, Providence, RI, 2001, p. 47–85. Zbl1006.37025MR1810536
- [16] A. Freire, A. Lopez & R. Mañe – “An invariant measure for rational maps”, Bol. Soc. Brasil. Mat.14 (1983), p. 45–62. Zbl0568.58027MR736568
- [17] M. Gromov – “On the entropy of holomorphic maps”, 49 (2003), p. 217–235, Manuscrit 1977. Zbl1080.37051MR2026895
- [18] V. Guedj – “Ergodic properties of rational mappings with large topological degree”, Ann. of Math. (2) 161 (2005), no. 3, p. 1589–1607. Zbl1088.37020MR2179389
- [19] J.H. Hubbard & P. Papadopol – “Supperattractive fixed points in ”, Indiana Univ. Math. J.43 (1994), p. 321–365. Zbl0858.32023MR1275463
- [20] P. Lelong – “Propriétés métriques des variétés analytiques complexes définies par une équation”, 67 (1950), p. 393–419. Zbl0039.08804MR47789
- [21] M. Lyubich – “Entropy properties of rational endomorphisms of the Riemann sphere”, Ergodic Theory Dynamical Systems3 (1983), p. 351–385. Zbl0537.58035MR741393
- [22] R. Mañe – “On the uniqueness of the maximizing measure for rational maps”, Bol. Soc. Brasil. Mat.14 (1983), p. 27–43. Zbl0568.58028MR736567
- [23] M. Misiurewicz & F. Przytycki – “Topological entropy and degree of smooth mappings”, 25 (1977), p. 573–574. Zbl0362.54037MR458501
- [24] W. Parry – Entropy and generators in ergodic theory, Benjamin Press, 1969. Zbl0175.34001MR262464
- [25] N. Sibony – “Dynamique des applications rationnelles de ”, in Dynamique et géométrie complexes (Lyon, 1997), vol. 8, Paris, 1999, p. 97–185. Zbl1020.37026MR1760844
- [26] P. Tortrat – “Aspects potentialistes de l’itération des polynômes”, in Differential geometry and differential equations (C. Gu, M. Berger & R.L. Bryant, éds.), Lect. Notes in Math., vol. 1255, Springer, 1987, p. 195–209. Zbl0672.31003MR1052425
- [27] T. Ueda – “Fatou sets in complex dynamics on projective spaces”, J. Math. Soc. Japan 46 (1994), no. 3, p. 545–555. Zbl0829.58025MR1276837
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.