Sub-Laplacians of holomorphic L p -type on exponential Lie groups

Detlef Müller

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2002)

  • Volume: 13, Issue: 3-4, page 259-270
  • ISSN: 1120-6330

Abstract

top
In this survey article, I shall give an overview on some recent developments concerning the L p -functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic L p -type, in the sense that every L p -spectral multiplier for p 2 will be holomorphic in some domain.

How to cite

top

Müller, Detlef. "Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 259-270. <http://eudml.org/doc/252319>.

@article{Müller2002,
abstract = {In this survey article, I shall give an overview on some recent developments concerning the $L^\{p\}$-functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic $L^\{p\}$-type, in the sense that every $L^\{p\}$-spectral multiplier for $p \neq 2$ will be holomorphic in some domain.},
author = {Müller, Detlef},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Solvable Lie group; Sub-Laplacian; Lebesgue space; Spectral multiplier},
language = {eng},
month = {12},
number = {3-4},
pages = {259-270},
publisher = {Accademia Nazionale dei Lincei},
title = {Sub-Laplacians of holomorphic $L^\{p\}$-type on exponential Lie groups},
url = {http://eudml.org/doc/252319},
volume = {13},
year = {2002},
}

TY - JOUR
AU - Müller, Detlef
TI - Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 259
EP - 270
AB - In this survey article, I shall give an overview on some recent developments concerning the $L^{p}$-functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic $L^{p}$-type, in the sense that every $L^{p}$-spectral multiplier for $p \neq 2$ will be holomorphic in some domain.
LA - eng
KW - Solvable Lie group; Sub-Laplacian; Lebesgue space; Spectral multiplier
UR - http://eudml.org/doc/252319
ER -

References

top
  1. Alexopoulos, G., Spectral multipliers on Lie groups of polynomial growth. Proc. Amer. Math. Soc., 120, 1994, 897-910. Zbl0794.43003MR1172944DOI10.2307/2160495
  2. Anker, J.-Ph., L p Fourier multipliers on Riemannian symmetric spaces of the non-compact type. Annals of Math., 132, 1990, 597-628. Zbl0741.43009MR1078270DOI10.2307/1971430
  3. Anker, J.-Ph. - Lohoué, N., Multiplicateurs sur certains espaces symétriques. Amer. J. Math., 108, 1986, 1303-1354. Zbl0616.43009MR868894DOI10.2307/2374528
  4. Astengo, F., Multipliers for distinguished Laplacians on solvable extensions of H -type groups. Monatshefte f. Math., 120, 1995, 179-188. Zbl0865.43004MR1363136DOI10.1007/BF01294856
  5. Bernat, P. et al., Représentations des groupes de Lie résolubles. Dunod, Paris1972. Zbl0248.22012
  6. Christ, M., L p bounds for spectral multipliers on nilpotent Lie groups. Trans. Amer. Math. Soc., 328, 1991, 73-81. Zbl0739.42010MR1104196DOI10.2307/2001877
  7. Christ, M. - Müller, D., On L p spectral multipliers for a solvable Lie group. Geom. and Funct. Anal., 6, 1996, 860-876. Zbl0878.43008MR1415763DOI10.1007/BF02246787
  8. Clerc, J.L. - Stein, E.M., L p -multipliers for non-compact symmetric spaces. Proc. Nat. Acad. Sci. USA, 71, 1974, 3911-3912. Zbl0296.43004MR367561
  9. Cowling, M. - Giulini, S. - Hulanicki, A. - Mauceri, G., Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. Studia Math., 111, 1994, 103-121. Zbl0820.43001MR1301761
  10. Cowling, M., The Kunze-Stein phenomenon. Annals of Math., 107, 1978, 209-234. Zbl0363.22007MR507240
  11. De Michele, L. - Mauceri, G., L p -multipliers on the Heisenberg group. Michigan J. Math., 26, 1979, 361-371. Zbl0437.43005MR544603
  12. Folland, G.B. - Stein, E.M., Hardy spaces on homogeneous groups. Math. Notes, Princeton Univ. Press, 28, 1982, 284. Zbl0508.42025MR657581
  13. Hebisch, W., The subalgebra of L 1 associated with a Laplacian on a Lie group. Proc. Amer. Math. Soc., 117, 1993, 547-549. Zbl0789.22018MR1111218DOI10.2307/2159195
  14. Hebisch, W., Multiplier theorem on generalized Heisenberg groups. Coll. Math., 65, 1993, 231-239. Zbl0841.43009MR1240169
  15. Hebisch, W., Boundedness of L 1 spectral multipliers for an exponential solvable Lie group. Coll. Math., 73, 1997, 155-164. Zbl0874.22005MR1436956
  16. Hebisch, W. - Ludwig, J. - Müller, D., Sub-Laplacians of holomorphic L p -type on exponential solvable groups. Submitted. Zbl1086.22006
  17. Hebisch, W. - Steger, T., Multipliers and singular integrals on exponential growth groups. Preprint. Zbl1035.43001MR2023952DOI10.1007/s00209-003-0510-6
  18. Herz, C. - Riviere, N., Estimates for translation-invariant operators on spaces with mixed norms. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, Studia-Math., 44, 1972, 511-515. Zbl0269.43006MR342959
  19. Hörmander, L., Hypoelliptic second-order differential equations. Acta Math, 119, 1967, 147-171. Zbl0156.10701MR222474
  20. Hulanicki, A., Subalgebra of L 1 G associated with Laplacians on a Lie group. Colloq. Math., l31, 1974, 259-287. Zbl0316.43005MR372536
  21. Leptin, H. - Ludwig, J., Unitary representation theory of exponential Lie groups. De Gruyter, Expositions in Mathematics, 18, 1994. Zbl0833.22012MR1307383DOI10.1515/9783110874235
  22. Ludwig, J. - Müller, D., Sub-Laplacians of holomorphic L p -type on rank one A N -groups and related solvable groups. J. of Funct. Anal., 170, 2000, 366-427. Zbl0957.22013MR1740657DOI10.1006/jfan.1999.3517
  23. Mauceri, G. - Meda, S., Vector-valued multipliers on stratified groups. Revista Math. Iberoamer., 6, 1990, 141-154. Zbl0763.43005MR1125759DOI10.4171/RMI/100
  24. Müller, D. - Stein, E.M., On spectral multipliers for Heisenberg and related groups. J. Math. Pures et Appliq., 73, 1994, 413-440. Zbl0838.43011MR1290494
  25. Müller, D. - Ricci, F. - Stein, E.M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups I. Invent. Math., 119, 1995, 199-233. Zbl0857.43012MR1312498DOI10.1007/BF01245180
  26. Müller, D. - Ricci, F. - Stein, E.M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups II. Math. Z., 221, 1996, 267-291. Zbl0863.43001MR1376298DOI10.1007/BF02622116
  27. Mustapha, S., Multiplicateurs spectraux sur certains groupes non-unimodulaires. Harmonic Analysis and Number Theory, CMS Conf. Proceedings, 21, 1997. Zbl0911.22003MR1472776
  28. Mustapha, S., Multiplicateurs de Mikhlin pour une classe particulière de groupes non-unimodulaires. Annales de l’Institut Fourier, 1998, 957-966. Zbl0911.22002MR1656003
  29. Nelson, E. - Stinespring, W.F., Representation of elliptic operators in an enveloping algebra. Amer. J. Math., 81, 1959, 547-560. Zbl0092.32103MR110024
  30. Poguntke, D., Auflösbare Liesche Gruppen mit symmetrischen L 1 -Algebren. J. für die Reine und Angew. Math., 358, 1985, 20-42. Zbl0547.43002MR797672DOI10.1515/crll.1985.358.20
  31. Taylor, M.E., L p estimates for functions of the Laplace operator. Duke Math. J., 58, 1989, 773-793. Zbl0691.58043MR1016445DOI10.1215/S0012-7094-89-05836-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.