Sub-Laplacians of holomorphic -type on exponential Lie groups
- Volume: 13, Issue: 3-4, page 259-270
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topMüller, Detlef. "Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 259-270. <http://eudml.org/doc/252319>.
@article{Müller2002,
abstract = {In this survey article, I shall give an overview on some recent developments concerning the $L^\{p\}$-functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic $L^\{p\}$-type, in the sense that every $L^\{p\}$-spectral multiplier for $p \neq 2$ will be holomorphic in some domain.},
author = {Müller, Detlef},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Solvable Lie group; Sub-Laplacian; Lebesgue space; Spectral multiplier},
language = {eng},
month = {12},
number = {3-4},
pages = {259-270},
publisher = {Accademia Nazionale dei Lincei},
title = {Sub-Laplacians of holomorphic $L^\{p\}$-type on exponential Lie groups},
url = {http://eudml.org/doc/252319},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Müller, Detlef
TI - Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 259
EP - 270
AB - In this survey article, I shall give an overview on some recent developments concerning the $L^{p}$-functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic $L^{p}$-type, in the sense that every $L^{p}$-spectral multiplier for $p \neq 2$ will be holomorphic in some domain.
LA - eng
KW - Solvable Lie group; Sub-Laplacian; Lebesgue space; Spectral multiplier
UR - http://eudml.org/doc/252319
ER -
References
top- Alexopoulos, G., Spectral multipliers on Lie groups of polynomial growth. Proc. Amer. Math. Soc., 120, 1994, 897-910. Zbl0794.43003MR1172944DOI10.2307/2160495
- Anker, J.-Ph., Fourier multipliers on Riemannian symmetric spaces of the non-compact type. Annals of Math., 132, 1990, 597-628. Zbl0741.43009MR1078270DOI10.2307/1971430
- Anker, J.-Ph. - Lohoué, N., Multiplicateurs sur certains espaces symétriques. Amer. J. Math., 108, 1986, 1303-1354. Zbl0616.43009MR868894DOI10.2307/2374528
- Astengo, F., Multipliers for distinguished Laplacians on solvable extensions of -type groups. Monatshefte f. Math., 120, 1995, 179-188. Zbl0865.43004MR1363136DOI10.1007/BF01294856
- Bernat, P. et al., Représentations des groupes de Lie résolubles. Dunod, Paris1972. Zbl0248.22012
- Christ, M., bounds for spectral multipliers on nilpotent Lie groups. Trans. Amer. Math. Soc., 328, 1991, 73-81. Zbl0739.42010MR1104196DOI10.2307/2001877
- Christ, M. - Müller, D., On spectral multipliers for a solvable Lie group. Geom. and Funct. Anal., 6, 1996, 860-876. Zbl0878.43008MR1415763DOI10.1007/BF02246787
- Clerc, J.L. - Stein, E.M., -multipliers for non-compact symmetric spaces. Proc. Nat. Acad. Sci. USA, 71, 1974, 3911-3912. Zbl0296.43004MR367561
- Cowling, M. - Giulini, S. - Hulanicki, A. - Mauceri, G., Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. Studia Math., 111, 1994, 103-121. Zbl0820.43001MR1301761
- Cowling, M., The Kunze-Stein phenomenon. Annals of Math., 107, 1978, 209-234. Zbl0363.22007MR507240
- De Michele, L. - Mauceri, G., -multipliers on the Heisenberg group. Michigan J. Math., 26, 1979, 361-371. Zbl0437.43005MR544603
- Folland, G.B. - Stein, E.M., Hardy spaces on homogeneous groups. Math. Notes, Princeton Univ. Press, 28, 1982, 284. Zbl0508.42025MR657581
- Hebisch, W., The subalgebra of associated with a Laplacian on a Lie group. Proc. Amer. Math. Soc., 117, 1993, 547-549. Zbl0789.22018MR1111218DOI10.2307/2159195
- Hebisch, W., Multiplier theorem on generalized Heisenberg groups. Coll. Math., 65, 1993, 231-239. Zbl0841.43009MR1240169
- Hebisch, W., Boundedness of spectral multipliers for an exponential solvable Lie group. Coll. Math., 73, 1997, 155-164. Zbl0874.22005MR1436956
- Hebisch, W. - Ludwig, J. - Müller, D., Sub-Laplacians of holomorphic -type on exponential solvable groups. Submitted. Zbl1086.22006
- Hebisch, W. - Steger, T., Multipliers and singular integrals on exponential growth groups. Preprint. Zbl1035.43001MR2023952DOI10.1007/s00209-003-0510-6
- Herz, C. - Riviere, N., Estimates for translation-invariant operators on spaces with mixed norms. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, Studia-Math., 44, 1972, 511-515. Zbl0269.43006MR342959
- Hörmander, L., Hypoelliptic second-order differential equations. Acta Math, 119, 1967, 147-171. Zbl0156.10701MR222474
- Hulanicki, A., Subalgebra of associated with Laplacians on a Lie group. Colloq. Math., l31, 1974, 259-287. Zbl0316.43005MR372536
- Leptin, H. - Ludwig, J., Unitary representation theory of exponential Lie groups. De Gruyter, Expositions in Mathematics, 18, 1994. Zbl0833.22012MR1307383DOI10.1515/9783110874235
- Ludwig, J. - Müller, D., Sub-Laplacians of holomorphic -type on rank one -groups and related solvable groups. J. of Funct. Anal., 170, 2000, 366-427. Zbl0957.22013MR1740657DOI10.1006/jfan.1999.3517
- Mauceri, G. - Meda, S., Vector-valued multipliers on stratified groups. Revista Math. Iberoamer., 6, 1990, 141-154. Zbl0763.43005MR1125759DOI10.4171/RMI/100
- Müller, D. - Stein, E.M., On spectral multipliers for Heisenberg and related groups. J. Math. Pures et Appliq., 73, 1994, 413-440. Zbl0838.43011MR1290494
- Müller, D. - Ricci, F. - Stein, E.M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups I. Invent. Math., 119, 1995, 199-233. Zbl0857.43012MR1312498DOI10.1007/BF01245180
- Müller, D. - Ricci, F. - Stein, E.M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups II. Math. Z., 221, 1996, 267-291. Zbl0863.43001MR1376298DOI10.1007/BF02622116
- Mustapha, S., Multiplicateurs spectraux sur certains groupes non-unimodulaires. Harmonic Analysis and Number Theory, CMS Conf. Proceedings, 21, 1997. Zbl0911.22003MR1472776
- Mustapha, S., Multiplicateurs de Mikhlin pour une classe particulière de groupes non-unimodulaires. Annales de l’Institut Fourier, 1998, 957-966. Zbl0911.22002MR1656003
- Nelson, E. - Stinespring, W.F., Representation of elliptic operators in an enveloping algebra. Amer. J. Math., 81, 1959, 547-560. Zbl0092.32103MR110024
- Poguntke, D., Auflösbare Liesche Gruppen mit symmetrischen -Algebren. J. für die Reine und Angew. Math., 358, 1985, 20-42. Zbl0547.43002MR797672DOI10.1515/crll.1985.358.20
- Taylor, M.E., estimates for functions of the Laplace operator. Duke Math. J., 58, 1989, 773-793. Zbl0691.58043MR1016445DOI10.1215/S0012-7094-89-05836-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.